Reduced-order deep learning for flow dynamics. The interplay between deep learning and model reduction
暂无分享,去创建一个
Yalchin Efendiev | Wing Tat Leung | Min Wang | Eric T. Chung | Siu Wun Cheung | Mary Wheeler | M. Wheeler | Y. Efendiev | Min Wang | W. Leung
[1] Yalchin Efendiev,et al. Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media , 2013, Multiscale Model. Simul..
[2] Yalchin Efendiev,et al. Deep Multiscale Model Learning , 2018, J. Comput. Phys..
[3] Yalchin Efendiev,et al. Non-local multi-continua upscaling for flows in heterogeneous fractured media , 2017, J. Comput. Phys..
[4] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..
[5] Yalchin Efendiev,et al. Online adaptive local multiscale model reduction for heterogeneous problems in perforated domains , 2016, 1605.07645.
[6] Jacob Fish,et al. Space?time multiscale model for wave propagation in heterogeneous media , 2004 .
[7] Yalchin Efendiev,et al. Generalized multiscale finite element method for elasticity equations , 2014 .
[8] Yating Wang,et al. A conservative local multiscale model reduction technique for Stokes flows in heterogeneous perforated domains , 2016, J. Comput. Appl. Math..
[9] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[10] Yalchin Efendiev,et al. An adaptive GMsFEM for high-contrast flow problems , 2013, J. Comput. Phys..
[11] Ilias Bilionis,et al. Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification , 2013, J. Comput. Phys..
[12] Daniel Peterseim,et al. A Multiscale Method for Porous Microstructures , 2014, Multiscale Model. Simul..
[13] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[14] Yalchin Efendiev,et al. Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..
[15] Bernard Haasdonk,et al. Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..
[16] Mehdi Ghommem,et al. Mode decomposition methods for flows in high-contrast porous media. Global-local approach , 2013, J. Comput. Phys..
[17] Yalchin Efendiev,et al. Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods , 2016, J. Comput. Phys..
[18] N. Zabaras,et al. Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective , 2013 .
[19] T. Arbogast. Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .
[20] Jürgen Schmidhuber,et al. Deep learning in neural networks: An overview , 2014, Neural Networks.
[21] H. Bourlard,et al. Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.
[22] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[23] Assyr Abdulle,et al. Adaptive reduced basis finite element heterogeneous multiscale method , 2013 .
[24] Mehdi Ghommem,et al. Global-Local Nonlinear Model Reduction for Flows in Heterogeneous Porous Media Dedicated to Mary Wheeler on the occasion of her 75-th birthday anniversary , 2014, 1407.0782.
[25] Wing Tat Leung,et al. A Sub-Grid Structure Enhanced Discontinuous Galerkin Method for Multiscale Diffusion and Convection-Diffusion Problems , 2013 .
[26] H. Owhadi,et al. Metric‐based upscaling , 2007 .
[27] Jacob Fish,et al. Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading , 2008 .
[28] Quoc V. Le,et al. Searching for Activation Functions , 2018, arXiv.
[29] Yalchin Efendiev,et al. Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods , 2010 .
[30] Victor M. Calo,et al. Fast Multiscale Reservoir Simulations With POD-DEIM Model Reduction , 2016 .
[31] Nicholas Zabaras,et al. Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification , 2018, J. Comput. Phys..
[32] Patrick Henning,et al. The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains , 2009, Numerische Mathematik.
[33] Grégoire Allaire,et al. A Multiscale Finite Element Method for Numerical Homogenization , 2005, Multiscale Model. Simul..
[34] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[35] C. Schwab,et al. Two-scale FEM for homogenization problems , 2002 .