Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: A functional magnetic resonance imaging study

[1]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[2]  David Badre,et al.  Left ventrolateral prefrontal cortex and the cognitive control of memory , 2007, Neuropsychologia.

[3]  Charan Ranganath,et al.  Prefrontal Cortex and Long-Term Memory Encoding: An Integrative Review of Findings from Neuropsychology and Neuroimaging , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[4]  C. Ranganath,et al.  The Dorsolateral Prefrontal Cortex Contributes to Successful Relational Memory Encoding , 2007, The Journal of Neuroscience.

[5]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[6]  C. Ranganath Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex , 2006, Neuroscience.

[7]  J. Jonides,et al.  Brain mechanisms of proactive interference in working memory , 2006, Neuroscience.

[8]  Adrian M. Owen,et al.  Working Memory: Linking Capacity with Selectivity , 2006, Current Biology.

[9]  David Badre,et al.  Frontal lobe mechanisms that resolve proactive interference. , 2005, Cerebral cortex.

[10]  Maro G. Machizawa,et al.  Neural measures reveal individual differences in controlling access to working memory , 2005, Nature.

[11]  M. Honda,et al.  Behavioral / Systems / Cognitive Functionally Segregated Neural Substrates for Arbitrary Audiovisual Paired-Association Learning , 2005 .

[12]  M. Petrides Lateral prefrontal cortex: architectonic and functional organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  M. D’Esposito,et al.  Directing the mind's eye: prefrontal, inferior and medial temporal mechanisms for visual working memory , 2005, Current Opinion in Neurobiology.

[14]  Irene P. Kan,et al.  Selection from perceptual and conceptual representations , 2004, Cognitive, affective & behavioral neuroscience.

[15]  A. Wagner,et al.  Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval , 2004, Brain and Cognition.

[16]  Michael X. Cohen,et al.  Inferior Temporal, Prefrontal, and Hippocampal Contributions to Visual Working Memory Maintenance and Associative Memory Retrieval , 2004, The Journal of Neuroscience.

[17]  Edward E. Smith,et al.  Neuroimaging studies of working memory: , 2003, Cognitive, affective & behavioral neuroscience.

[18]  B. Postle,et al.  Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies , 2000, Experimental Brain Research.

[19]  James K. Kroger,et al.  Cross-modal and cross-temporal association in neurons of frontal cortex , 2000, Nature.

[20]  Adrian M. Owen,et al.  The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging , 2000, Experimental Brain Research.

[21]  Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y: Comments , 1999 .

[22]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[23]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[24]  E E Smith,et al.  The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Jonides,et al.  Neuroimaging analyses of human working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Y. Miyashita,et al.  Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. , 1998, Science.

[27]  J. Jonides,et al.  Inhibition in verbal working memory revealed by brain activation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[29]  Karl J. Friston,et al.  Nonlinear event‐related responses in fMRI , 1998, Magnetic resonance in medicine.

[30]  S. Gutnikov,et al.  Temporo‐frontal Disconnection Impairs Visual‐visual Paired Association Learning but not Configural Learning in Macaca Monkeys , 1997, The European journal of neuroscience.

[31]  A. Owen The Functional Organization of Working Memory Processes Within Human Lateral Frontal Cortex: The Contribution of Functional Neuroimaging , 1997, The European journal of neuroscience.

[32]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[33]  Alan C. Evans,et al.  Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. , 1996, Cerebral cortex.

[34]  Endel Tulving,et al.  Organization of memory: Quo vadis? , 1995 .

[35]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[36]  Michael Petrides,et al.  Frontal lobes and behaviour , 1994, Current Opinion in Neurobiology.

[37]  M. J. Eacott,et al.  Inferotemporal‐frontal Disconnection: The Uncinate Fascicle and Visual Associative Learning in Monkeys , 1992, The European journal of neuroscience.

[38]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[39]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[40]  B. Underwood,et al.  Fate of first-list associations in transfer theory. , 1959, Journal of experimental psychology.