A triaxial supramolecular weave
暂无分享,去创建一个
Wojciech Pisula | Klaus Müllen | Helma Wennemers | Eiji Yashima | Chen Li | Edmondo M Benetti | Chen Li | K. Müllen | E. Yashima | W. Pisula | U. Lewandowska | Kohei Watanabe | H. Wennemers | E. M. Benetti | Urszula Lewandowska | Wojciech Zajaczkowski | Stefano Corra | Junki Tanabe | Ruediger Borrmann | Sebastian Stappert | Kohei Watanabe | Nellie A K Ochs | Robin Schaeublin | R. Schaeublin | Junki Tanabe | R. Borrmann | Sebastian Stappert | S. Corra | W. Zaja̧czkowski | Nellie A. K. Ochs | E. Benetti
[1] V. Thomas. Concepts and Perspectives , 2019, The Moral Universe of Shakespeare’s Problem Plays.
[2] M. Mayor,et al. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. , 2017, Nature Communications.
[3] Chen Li,et al. Effect of Structural Modifications on the Self-Assembly of Oligoprolines Conjugated with Sterically Demanding Chromophores. , 2016, Chemistry.
[4] G. Schatz,et al. Simultaneous covalent and noncovalent hybrid polymerizations , 2016, Science.
[5] O. Terasaki,et al. Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.
[6] B. T. King,et al. Two-dimensional polymers: concepts and perspectives. , 2016, Chemical communications.
[7] I. Vitorica-Yrezabal,et al. A Solomon Link through an Interwoven Molecular Grid** , 2015, Angewandte Chemie.
[8] David A Leigh,et al. Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.
[9] K. Müllen,et al. Hierarchical supramolecular assembly of sterically demanding π-systems by conjugation with oligoprolines. , 2014, Angewandte Chemie.
[10] N. Trapp,et al. A crystal structure of an oligoproline PPII-helix, at last. , 2014, Journal of the American Chemical Society.
[11] M. Wasielewski,et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. , 2014, Nature chemistry.
[12] Peter D. Frischmann,et al. Synthesis of a non-aggregating bay-unsubstituted perylene bisimide dye with latent bromo groups for C-C cross coupling. , 2013, Organic letters.
[13] N. Ponnuswamy,et al. Discovery of an Organic Trefoil Knot , 2012, Science.
[14] E. W. Meijer,et al. Functional Supramolecular Polymers , 2012, Science.
[15] E. W. Meijer,et al. Pathway complexity in supramolecular polymerization , 2012, Nature.
[16] M. Nishio,et al. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. , 2011, Physical chemistry chemical physics : PCCP.
[17] Hao Yan,et al. DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.
[18] J. Mayer,et al. Size-Selective, Stabilizer-Free, Hydrogenolytic Synthesis of Iridium Nanoparticles Supported on Carbon Nanotubes , 2011 .
[19] Qian Chen,et al. Directed self-assembly of a colloidal kagome lattice , 2014 .
[20] David L Bryce,et al. Direct detection of CH/pi interactions in proteins. , 2010, Nature chemistry.
[21] Louis-Sebastian Sonntag,et al. Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. , 2007, Journal of the American Chemical Society.
[22] E. W. Meijer,et al. Probing the Solvent-Assisted Nucleation Pathway in Chemical Self-Assembly , 2006, Science.
[23] A. Turberfield,et al. Engineering a 2D protein-DNA crystal. , 2005, Angewandte Chemie.
[24] Gareth W. V. Cave,et al. Molecular Borromean Rings , 2004, Science.
[25] F. Diederich,et al. Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.
[26] B. Purdy. Enduring Records: The Environmental and Cultural Heritage of Wetlands , 2001 .
[27] H. Stoeckli-Evans,et al. Designed Molecules for Self-Assembly: The Controlled Formation of Two Chiral Self-Assembled Polynuclear Species with Predetermined Configuration. , 2001, Angewandte Chemie.
[28] M. Maekawa,et al. 2-D interwoven and 3-D 5-fold interpenetrating silver(I) complexes of 1-(isocyanidomethyl)-1H-benzotriazole and 1,3-bis(dicyanomethylidene)indan. , 2000, Inorganic chemistry.
[29] M. Kanatzidis,et al. Flux Synthesis of LiAuS and NaAuS: "Chicken-Wire-Like" Layer Formation by Interweaving of (AuS)(n)(n)(-) Threads. Comparison with alpha-HgS and AAuS (A = K, Rb). , 1998, Inorganic chemistry.
[30] H. Rzepa. Braiding a molecular knot with eight crossings. , 2017 .
[31] S. Brooker,et al. Control of molecular architecture by use of the appropriate ligand isomer: a mononuclear ?corner-type? versus a tetranuclear [2 2] grid-type cobalt(iii) complexElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b403905j/ , 2004 .
[32] S. Rizzato,et al. Crystal engineering of coordination polymersand architectures using the [Cu(2,2′-bipy)]2+molecular corner as building block (bipy = 2,2′-bipyridyl) , 2000 .
[33] Kentaro Tanaka,et al. A spontaneously resolved chiral molecular box: a cyclic tetranuclear ZnII complex with DPTZ (DPTZ = 3,6-di-2-pyridyl-1,2,4,5-tetrazine) , 2000 .
[34] A. Balch,et al. Construction of a knitted crystalline polymer through the use of gold(I)–gold(I) interactions , 1995 .