Estimating the Support of a High-Dimensional Distribution
暂无分享,去创建一个
Bernhard Schölkopf | Alexander J. Smola | John Shawe-Taylor | John C. Platt | Robert C. Williamson | R. C. Williamson | B. Schölkopf | J. Shawe-Taylor | Alex Smola | B. Scholkopf
[1] V. Vapnik. Pattern recognition using generalized portrait method , 1963 .
[2] Shun-ichi Amari,et al. A Theory of Pattern Recognition , 1968 .
[3] T. Sager. An Iterative Method for Estimating a Multivariate Mode and Isopleth , 1979 .
[4] L. Devroye,et al. Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .
[5] Numérisation de documents anciens mathématiques. Annales de l'Institut Henri Poincaré. Section B, Calcul des probabilités et statistique , 1982 .
[6] J. Hartigan. Estimation of a Convex Density Contour in Two Dimensions , 1987 .
[7] F. Girosi,et al. Networks for approximation and learning , 1990, Proc. IEEE.
[8] A. Cuevas. On Pattern Analysis in the Non‐Convex Case , 1990 .
[9] D. Nolan. The excess-mass ellipsoid , 1991 .
[10] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[11] D. Mason,et al. Generalized quantile processes , 1992 .
[12] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[13] A. P. Korostelev,et al. MiniMax Methods for Image Reconstruction , 1993 .
[14] A. Tsybakov,et al. Minimax theory of image reconstruction , 1993 .
[15] W. Polonik. Density estimation under qualative assumptions inhigher dimensions , 1995 .
[16] W. Polonik. Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .
[17] Bernhard Schölkopf,et al. Extracting Support Data for a Given Task , 1995, KDD.
[18] Michael Brady,et al. Novelty detection for the identification of masses in mammograms , 1995 .
[19] Bernhard Schölkopf,et al. Kernel Principal Component Analysis , 1997, ICANN.
[20] Bernhard Schölkopf,et al. Support vector learning , 1997 .
[21] A. Tsybakov. On nonparametric estimation of density level sets , 1997 .
[22] A. Cuevas,et al. A plug-in approach to support estimation , 1997 .
[23] W. Polonik. Minimum volume sets and generalized quantile processes , 1997 .
[24] Shai Ben-David,et al. Learning Distributions by Their Density Levels: A Paradigm for Learning without a Teacher , 1997, J. Comput. Syst. Sci..
[25] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[26] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[27] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[28] Bernhard Schölkopf,et al. The connection between regularization operators and support vector kernels , 1998, Neural Networks.
[29] Thorsten Joachims,et al. Making large-scale support vector machine learning practical , 1999 .
[30] Federico Girosi,et al. An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.
[31] John Platt,et al. Fast training of svms using sequential minimal optimization , 1998 .
[32] Nello Cristianini,et al. Margin Distribution Bounds on Generalization , 1999, EuroCOLT.
[33] Nello Cristianini,et al. Advances in Kernel Methods - Support Vector Learning , 1999 .
[34] John C. Platt,et al. Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .
[35] Joachim M. Buhmann,et al. Single-class Support Vector Machines , 1999 .
[36] Bernhard Schölkopf,et al. Entropy Numbers, Operators and Support Vector Kernels , 1999, EuroCOLT.
[37] B. Schölkopf,et al. Advances in kernel methods: support vector learning , 1999 .
[38] D. Stoneking. Improving the manufacturability of electronic designs , 1999 .
[39] Nello Cristianini,et al. Generalization Performance of Classifiers in Terms of Observed Covering Numbers , 1999, EuroCOLT.
[40] Bernhard Schölkopf,et al. Bounds on Error Expectation for SVM , 2000 .
[41] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[42] Bernhard Schölkopf,et al. Four-legged Walking Gait Control Using a Neuromorphic Chip Interfaced to a Support Vector Learning Algorithm , 2000, NIPS.
[43] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[44] Bernhard Schölkopf,et al. Kernel method for percentile feature extraction , 2000 .
[45] Bernhard Schölkopf,et al. Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra , 2000, NIPS.
[46] O. Chapelle,et al. Bounds on error expectation for SVM , 2000 .
[47] Bernhard Schölkopf,et al. Entropy Numbers of Linear Function Classes , 2000, COLT.
[48] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[49] Bernhard Schölkopf,et al. Regularized Principal Manifolds , 1999, J. Mach. Learn. Res..
[50] S. Sathiya Keerthi,et al. Improvements to Platt's SMO Algorithm for SVM Classifier Design , 2001, Neural Computation.
[51] Bernhard Schölkopf,et al. Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators , 1998 .
[52] A. Belousov,et al. Applicational aspects of support vector machines , 2002 .
[53] D. Chakraborty,et al. Making a multilayered perceptron network say - "don't know" when it should , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..
[54] Nello Cristianini,et al. On the generalization of soft margin algorithms , 2002, IEEE Trans. Inf. Theory.
[55] Alexander J. Smola,et al. Classification in a normalized feature space using support vector machines , 2003, IEEE Trans. Neural Networks.
[56] Fernando Pérez-Cruz,et al. Supervised-PCA and SVM classifiers for object detection in infrared images , 2003, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2003..
[57] Chao He,et al. Probability Density Estimation from Optimally Condensed Data Samples , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[58] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .