Image reconstruction in optical interferometry

Since the first multitelescope optical interferometer [1], considerable technological improvements have been achieved. Optical (visible/infrared) interferometers are now widely open to the astronomical community and provide the means to obtain unique information from observed objects at very high angular resolution (submilliarcsecond). There are numerous astrophysical applications, such as stellar surfaces, environment of premain sequence or evolved stars, and central regions of active galaxies. See [2]-[4] for comprehensive reviews about optical interferometry and recent astrophysical results. As interferometers do not directly provide images, reconstruction methods are needed to fully exploit these instruments. This article aims at reviewing image reconstruction algorithms in astronomical interferometry using a general framework to formally describe and compare the different methods. The challenging issues in image reconstruction from interferometric data are introduced in the general framework of inverse problem approach. This framework is then used to describe existing image reconstruction algorithms in radio interferometry and the new methods specifically developed for optical interferometry.

[1]  A. Glindemann,et al.  PRIMA for the VLTI – Science , 2003 .

[2]  J. Goodman Statistical Optics , 1985 .

[3]  Karl-Heinz Hofmann,et al.  2008 imaging beauty contest , 2008, Astronomical Telescopes + Instrumentation.

[4]  É. Thiébaut Image reconstruction with optical interferometers , 2009 .

[5]  David F. Buscher Direct Maximum-Entropy Image Reconstruction from the Bispectrum , 1994 .

[6]  A. Readhead,et al.  The mapping of compact radio sources from VLBI data. , 1978 .

[7]  Guy Le Besnerais,et al.  Advanced Imaging Methods for Long-Baseline Optical Interferometry , 2008, IEEE Journal of Selected Topics in Signal Processing.

[8]  Francois Bonnarel,et al.  Entropy and astronomical data analysis: Perspectives from multiresolution analysis , 2001 .

[9]  K. A. Marsh,et al.  The objective function implicit in the CLEAN algorithm , 1987 .

[10]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[11]  Robert C. Kennicutt,et al.  MULTI-SCALE CLEAN: A COMPARISON OF ITS PERFORMANCE AGAINST CLASSICAL CLEAN ON GALAXIES USING THINGS , 2008, 0810.2825.

[12]  B. Wirnitzer Bispectral analysis at low light levels and astronomical speckle masking , 1985 .

[13]  F. Courbin,et al.  Deconvolution with Correct Sampling , 1997, astro-ph/9704059.

[14]  A Novel Reconstruction Method for Weak-Phase Optical Interferometry , 2005 .

[15]  Éric Thiébaut Image Reconstruction in Optical Interferometry , 2011 .

[16]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[17]  Stephen F. Gull,et al.  Developments in Maximum Entropy Data Analysis , 1989 .

[18]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[19]  R. Perley,et al.  Synthesis Imaging in Radio Astronomy: A Collection of Lectures from the Third Nrao Synthesis Imaging Summer School , 1989 .

[20]  U. Schwarz MATHEMATICAL-STATISTICAL DESCRIPTION OF ITERATIVE BEAM REMOVING TECHNIQUE (METHOD CLEAN) , 1978 .

[21]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[22]  Jean-Luc Starck,et al.  Deconvolution of astronomical images using the multiscale maximum entropy method , 1996 .

[23]  G. Perrin,et al.  High dynamic range imaging with a single-mode pupil remapping system: a self-calibration algorithm for redundant interferometric arrays , 2006 .

[24]  J. Giovannelli,et al.  Positive deconvolution for superimposed extended source and point sources , 2005, astro-ph/0507691.

[25]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[26]  Andreas Quirrenbach,et al.  Optical Interferometry , 2001 .

[27]  John D. Monnier,et al.  Monte-Carlo imaging for optical interferometry , 2020, SPIE Astronomical Telescopes + Instrumentation.

[28]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[29]  J. D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2005 .

[30]  Christopher A. Haniff,et al.  Erratum: Least-squares Fourier phase estimation from the modulo 2pi bispectrum phase phase [J. Opt. Soc. Am. A 8, 134-140 (1991)] , 1991 .

[31]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[32]  John S. Young,et al.  Image reconstruction at Cambridge University , 2008, Astronomical Telescopes + Instrumentation.

[33]  André Lannes WEAK-PHASE IMAGING IN OPTICAL INTERFEROMETRY , 1998 .

[34]  Gerd Weigelt,et al.  Iterative image reconstruction from the bispectrum , 1993 .

[35]  R. Narayan,et al.  Maximum Entropy Image Restoration in Astronomy , 1986 .

[36]  W. D. Cotton,et al.  A method of mapping compact structure in radio sources using VLBI observations , 1979 .

[37]  Eric Anterrieu,et al.  CLEAN and WIPE , 1997 .

[38]  Keith Horne,et al.  Images of accretion discs – I. The eclipse mapping method , 1985 .

[39]  Eric Thiebaut,et al.  Optimization issues in blind deconvolution algorithms , 2002, SPIE Astronomical Telescopes + Instrumentation.

[40]  Eric Thiebaut,et al.  Pre-maximum spectro-imaging of the Mira star T Leporis with AMBER/VLTI , 2009, 0902.3698.

[41]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[42]  A. Greenaway,et al.  Estimation of spatial power spectra in speckle interferometry , 1979 .

[43]  Frederic R. Schwab,et al.  Adaptive Calibration Of Radio Interferometer Data , 1980, Other Conferences.

[44]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[45]  J. Monnier Optical interferometry in astronomy , 2003, astro-ph/0307036.

[46]  Éric Thiébaut,et al.  MIRA: an effective imaging algorithm for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[47]  GIRA - Two Channel Photometric Restoration , 2000 .

[48]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[49]  Antoine Labeyrie,et al.  Interference fringes obtained on VEGA with two optical telescopes , 1975 .

[50]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[51]  John D. Monnier,et al.  2006 interferometry imaging beauty contest , 2006, SPIE Astronomical Telescopes + Instrumentation.

[52]  U. Schwarz,et al.  The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry , 1988 .

[53]  E. Fomalont Earth-rotation aperture synthesis , 1973 .

[54]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[55]  Guy Perrin VLTI Science Highlights , 2009 .

[56]  J. P. Wild Measurement and Processing for Indirect Imaging , 1984 .

[57]  D. J. M. Kester,et al.  Pyramid maximum entropy images of IRAS survey data. , 1994 .

[58]  John D. Monnier,et al.  A Data Exchange Standard for Optical (Visible/IR) Interferometry , 2004, SPIE Astronomical Telescopes + Instrumentation.

[59]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[60]  J. Skilling,et al.  Maximum entropy image reconstruction: general algorithm , 1984 .

[61]  Jean-Luc Starck,et al.  Image reconstruction by the wavelet transform applied to aperture synthesis , 1994 .

[62]  R. Bracewell,et al.  Interpolation and Fourier transformation of fringe visibilities , 1974 .

[63]  S. F. Gull,et al.  The Maximum Entropy Method , 1979 .

[64]  T. Cornwell,et al.  A new method for making maps with unstable radio interferometers , 1981 .

[65]  Serge Meimon,et al.  Convex approximation to the likelihood criterion for aperture synthesis imaging. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.