Stochastic Ordinary Differential Equations in Applied and Computational Mathematics

Using concrete examples, we discuss the current and potential use of stochastic ordinary differential equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a minimal background knowledge in probability and stochastic processes, we focus on aspects that distinguish SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in chemical kinetics, population dynamics, and, most topically, systems biology. We outline some key issues in existence, uniqueness and stability that arise when SDEs are used as physical models, and point out possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and explain how both weak and strong convergence properties are relevant for highly-efficient multilevel Monte Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially on nonlinear models, parameter estimation, model comparison and multiscale simulation.

[1]  W M Young,et al.  Monte Carlo studies of vacancy migration in binary ordered alloys: I , 1966 .

[2]  J. Griffiths The Theory of Stochastic Processes , 1967 .

[3]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[4]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[5]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[7]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[8]  T. Kurtz Approximation of Population Processes , 1987 .

[9]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[10]  David R. Appleton,et al.  Modelling Biological Populations in Space and Time , 1993 .

[11]  Yacine Ait-Sahalia Testing Continuous-Time Models of the Spot Interest Rate , 1995 .

[12]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[13]  Thomas Mikosch,et al.  Elementary stochastic calculus with finance in view , 1998 .

[14]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[15]  J. Hasty,et al.  Noise-based switches and amplifiers for gene expression. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Desmond J. Higham,et al.  Mean-Square and Asymptotic Stability of the Stochastic Theta Method , 2000, SIAM J. Numer. Anal..

[17]  P. Kloeden,et al.  From Elementary Probability to Stochastic Differential Equations with MAPLE , 2001 .

[18]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[19]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[20]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[21]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[22]  Desmond J. Higham An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation , 2004 .

[23]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[24]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[25]  G. N. Milstein,et al.  Numerical Integration of Stochastic Differential Equations with Nonglobally Lipschitz Coefficients , 2005, SIAM J. Numer. Anal..

[26]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[27]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[28]  H. Othmer,et al.  A stochastic analysis of first-order reaction networks , 2005, Bulletin of mathematical biology.

[29]  T. Kurtz,et al.  Submitted to the Annals of Applied Probability ASYMPTOTIC ANALYSIS OF MULTISCALE APPROXIMATIONS TO REACTION NETWORKS , 2022 .

[30]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[31]  Ioannis G Kevrekidis,et al.  Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. , 2005, The Journal of chemical physics.

[32]  P. Kloeden,et al.  The Pathwise Convergence of Approximation Schemes for Stochastic Differential Equations , 2007, LMS J. Comput. Math..

[33]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[34]  Desmond J. Higham,et al.  Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations , 2007, SIAM J. Numer. Anal..

[35]  Rainer Avikainen,et al.  Convergence Rates for Approximations of Functionals of SDEs , 2007, 0712.3635.

[36]  S. Iacus SDE : simulation and inference for stochastic differential equations , 2008 .

[37]  Tatiana T Marquez-Lago,et al.  Generalized binomial tau-leap method for biochemical kinetics incorporating both delay and intrinsic noise. , 2008, The Journal of chemical physics.

[38]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[39]  Y. Wong,et al.  Positivity preserving chemical Langevin equations , 2008 .

[40]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[41]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[42]  T. McMillen Simulation and Inference for Stochastic Differential Equations: With R Examples , 2008 .

[43]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[44]  LUKASZ SZPRUCH,et al.  Comparing Hitting Time Behavior of Markov Jump Processes and Their Diffusion Approximations , 2010, Multiscale Model. Simul..

[45]  G. Roberts,et al.  Optimal scalings of Metropolis-Hastings algorithms for non-product targets in high dimensions , 2009 .

[46]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[47]  L. Szpruch,et al.  Strongly Nonlinear Ait-Sahalia-Type Interest Rate Model and its Numerical Approximation , 2009 .

[48]  Desmond J. Higham,et al.  Switching and Diffusion Models for Gene Regulation Networks , 2009, Multiscale Model. Simul..

[49]  Desmond J. Higham,et al.  Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff , 2009, Finance Stochastics.

[50]  Jonathan C. Mattingly,et al.  A weak trapezoidal method for a class of stochastic differential equations , 2009, 0906.3475.

[51]  Arnulf Jentzen,et al.  Non-globally Lipschitz Counterexamples for the stochastic Euler scheme , 2009 .

[52]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  Tobias Jahnke,et al.  An Adaptive Wavelet Method for the Chemical Master Equation , 2009, SIAM J. Sci. Comput..

[54]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[55]  A. Mira,et al.  Discussion of ”Riemann manifold Langevin and Hamiltonian Monte Carlo methods” by M. Girolami and B. Calderhead , 2011 .

[56]  David F. Anderson,et al.  Error analysis of tau-leap simulation methods , 2009, 0909.4790.

[57]  L. Szpruch,et al.  Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model , 2011 .