Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint

Abstract This paper describes the computation of reachable sets and tubes for linear time-invariant systems with an unknown input bounded by integral quadratic constraints, modeling e.g. delay, rate limiter, or energy bounds. We define a family of paraboloidal overapproximations. These paraboloids are supported by the reachable tube on touching trajectories. Parameters of each paraboloid are expressed as a solution to an initial value problem. Compared to previous methods based on the classical linear quadratic regulator, our approach can be applied to unstable systems as well. We tested our approach on large scale systems.

[1]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[2]  A. Helmersson An IQC-Based Stability Criterion for Systems with Slowly Varying Parameters , 1999 .

[3]  Frédéric Gouaisbaut,et al.  Hierarchy of LMI conditions for the stability analysis of time-delay systems , 2015, Syst. Control. Lett..

[4]  B. Krogh,et al.  Hyperplane method for reachable state estimation for linear time-invariant systems , 1991 .

[5]  Demetrios Lainiotis Generalized Chandrasekhar algorithms: Time-varying models , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[6]  Ian R. Petersen,et al.  Model validation for robust control of uncertain systems with an integral quadratic constraint , 1996, Autom..

[7]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[8]  Pierre Roux,et al.  Closed loop analysis of control command software , 2015, HSCC.

[9]  Alexandre M. Bayen,et al.  Aircraft Autolander Safety Analysis Through Optimal Control-Based Reach Set Computation , 2007 .

[10]  F. L. Chernousko What is Ellipsoidal Modelling and How to Use It for Control and State Estimation , 1999 .

[11]  Carsten W. Scherer,et al.  Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions , 2018, Syst. Control. Lett..

[12]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[13]  F. Gouaisbaut,et al.  Stability analysis of time‐delay systems via Bessel inequality: A quadratic separation approach , 2018 .

[14]  Peter Seiler,et al.  Finite Horizon Robustness Analysis of LTV Systems Using Integral Quadratic Constraints , 2017, Autom..

[15]  Tom Fleischer,et al.  Applied Functional Analysis , 2016 .

[16]  Pravin Varaiya,et al.  Reach Set Computation Using Optimal Control , 2000 .

[17]  Dimitri Peaucelle,et al.  Integral Quadratic Separators for performance analysis , 2009, 2009 European Control Conference (ECC).

[18]  Eric Feron,et al.  A generic ellipsoid abstract domain for linear time invariant systems , 2012, HSCC '12.

[19]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[20]  I. Petersen,et al.  Recursive state estimation for uncertain systems with an integral quadratic constraint , 1995, IEEE Trans. Autom. Control..

[21]  Decision Systems.,et al.  Integral quadratic constraints for systems with rate limiters , 1997 .

[22]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[23]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[24]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[25]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[26]  C. Kenney,et al.  Numerical integration of the differential matrix Riccati equation , 1985 .

[27]  Approximate construction of attainability sets of control systems with integral constraints on the controls , 1999 .

[28]  Pierpaolo Soravia Viscosity solutions and optimal control problems with integral constraints , 2000 .

[29]  E. Akyar,et al.  On the continuity properties of the attainable sets of control systems with integral constraints on control , 2004 .

[30]  Shinji Hara,et al.  Time domain interpretations of frequency domain inequalities on (semi)finite ranges , 2005, Syst. Control. Lett..

[31]  Khalik G. Guseinov Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls , 2009 .

[32]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis of Discrete-Time Linear Systems , 2007, IEEE Transactions on Automatic Control.

[33]  H. Kwakernaak,et al.  Polynomial J-spectral factorization , 1994, IEEE Trans. Autom. Control..

[34]  Jan C. Willems,et al.  Dissipative Dynamical Systems , 2007, Eur. J. Control.

[35]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[36]  Vladimír Kucera,et al.  A review of the matrix Riccati equation , 1973, Kybernetika.

[37]  Ulf T. Jönsson Robustness of trajectories with finite time extent , 2002, Autom..

[38]  Chung-Yao Kao,et al.  Stability analysis of systems with uncertain time-varying delays , 2007, Autom..

[39]  Mikhail I. Gusev,et al.  On Extremal Properties of Boundary Points of Reachable Sets for a System with Integrally Constrained Control , 2017 .

[40]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[41]  A. Megretski KYP Lemma for Non-Strict Inequalities and the associated Minimax Theorem , 2010, 1008.2552.

[42]  Didier Henrion,et al.  Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint , 2019, 2019 18th European Control Conference (ECC).

[43]  P. Varaiya,et al.  Ellipsoidal techniques for reachability analysis: internal approximation , 2000 .

[44]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[45]  S. Bittanti,et al.  The Riccati equation , 1991 .

[46]  Pravin Varaiya,et al.  On Ellipsoidal Techniques for Reachability Analysis. Part I: External Approximations , 2002, Optim. Methods Softw..

[47]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[48]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[49]  M. Safonov,et al.  IQC robustness analysis for time‐delay systems , 2001 .

[50]  A. Balakrishnan Applied Functional Analysis , 1976 .

[51]  R. Curtain,et al.  Functional Analysis in Modern Applied Mathematics , 1977 .

[52]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .