A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors

In this work, a new fractional-order chaotic system with a single parameter and four nonlinearities is introduced. One striking feature is that by varying the system parameter, the fractional-order system generates several complex dynamics: self-excited attractors, hidden attractors, and the coexistence of hidden attractors. In the family of self-excited chaotic attractors, the system has four spiral-saddle-type equilibrium points, or two nonhyperbolic equilibria. Besides, for a certain value of the parameter, a fractional-order no-equilibrium system is obtained. This no-equilibrium system presents a hidden chaotic attractor with a ‘hurricane’-like shape in the phase space. Multistability is also observed, since a hidden chaotic attractor coexists with a periodic one. The chaos generation in the new fractional-order system is demonstrated by the Lyapunov exponents method and equilibrium stability. Moreover, the complexity of the self-excited and hidden chaotic attractors is analyzed by computing their spectral entropy and Brownian-like motions. Finally, a pseudo-random number generator is designed using the hidden dynamics.

[1]  Matthew Nicol,et al.  Generation of multi-scroll attractors without equilibria via piecewise linear systems. , 2017, Chaos.

[2]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[3]  Qiang Lai,et al.  A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design , 2017, Entropy.

[4]  Wei-Ching Chen,et al.  Nonlinear dynamics and chaos in a fractional-order financial system , 2008 .

[5]  Viet-Thanh Pham,et al.  A fractional-order form of a system with stable equilibria and its synchronization , 2018 .

[6]  Anda Xiong,et al.  Classifying and quantifying basins of attraction. , 2015, Chaos.

[7]  Marius-F. Danca,et al.  Hidden chaotic attractors in fractional-order systems , 2018, 1804.10769.

[8]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[9]  I. Petráš Comments on “Coexistence of hidden chaotic attractors in a novel no-equilibrium system” (Nonlinear Dyn, doi:10.1007/s11071-016-3170-x) , 2017, Nonlinear dynamics.

[10]  José António Tenreiro Machado,et al.  Complex and Fractional Dynamics , 2017, Entropy.

[11]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[12]  Christos Volos,et al.  Coexistence of hidden chaotic attractors in a novel no-equilibrium system , 2017 .

[13]  Marcelo Messias,et al.  On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system , 2017 .

[14]  Giuseppe Grassi,et al.  Elegant Chaos in Fractional-Order System without Equilibria , 2013 .

[15]  Ahmed Alsaedi,et al.  Chaos in Fractional Order Cubic Chua System and Synchronization , 2017, Int. J. Bifurc. Chaos.

[16]  Roberto Garrappa,et al.  Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial , 2018 .

[17]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[18]  Jacques M. Bahi,et al.  Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  O. I. Tacha,et al.  Determining the chaotic behavior in a fractional-order finance system with negative parameters , 2018, Nonlinear Dynamics.

[20]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[22]  Tomas Gotthans,et al.  New class of chaotic systems with circular equilibrium , 2015 .

[23]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[24]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[25]  Christos Volos,et al.  A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization , 2017 .

[26]  Jesus M. Munoz-Pacheco,et al.  Chaos generation in fractional-order switched systems and its digital implementation , 2017 .

[27]  Viet-Thanh Pham,et al.  A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form , 2017 .

[28]  Ioannis N. Stouboulos,et al.  A fractional order chaotic system with a 3D grid of variable attractors , 2018, Chaos, Solitons & Fractals.

[29]  Viet-Thanh Pham,et al.  Constructing and analyzing of a unique three-dimensional chaotic autonomous system exhibiting three families of hidden attractors , 2017, Math. Comput. Simul..

[30]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[31]  Christos Volos,et al.  A chaotic system with rounded square equilibrium and with no-equilibrium , 2017 .

[32]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[33]  Viet-Thanh Pham,et al.  Chameleon: the most hidden chaotic flow , 2017, Nonlinear Dynamics.

[34]  Viet-Thanh Pham,et al.  Three-Dimensional Chaotic Autonomous System with a Circular Equilibrium: Analysis, Circuit Implementation and Its Fractional-Order Form , 2016, Circuits Syst. Signal Process..

[35]  Sajad Jafari,et al.  Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses , 2017 .

[36]  Badr Saad T. Alkahtani,et al.  Chaos on the Vallis Model for El Niño with Fractional Operators , 2016, Entropy.

[37]  Tao Yang,et al.  A SURVEY OF CHAOTIC SECURE COMMUNICATION SYSTEMS , 2004 .

[38]  Georg A. Gottwald,et al.  On the validity of the 0–1 test for chaos , 2009, 0906.1415.

[39]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[40]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.

[41]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[42]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[43]  Julien Clinton Sprott,et al.  Strange attractors with various equilibrium types , 2015 .

[44]  Weihua Deng,et al.  Design of multidirectional multiscroll chaotic attractors based on fractional differential systems via switching control. , 2006, Chaos.

[45]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[46]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[47]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[48]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[49]  Kehui Sun,et al.  Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System , 2015, Entropy.

[50]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[51]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[52]  Julien Clinton Sprott,et al.  Evaluating Lyapunov exponent spectra with neural networks , 2013 .

[53]  Viet-Thanh Pham,et al.  A No-Equilibrium Hyperchaotic System and Its Fractional-Order Form , 2017 .

[54]  A. Gallant,et al.  Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data , 1991 .

[55]  Giuseppe Grassi,et al.  Chaos in a new fractional-order system without equilibrium points , 2014, Commun. Nonlinear Sci. Numer. Simul..

[56]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[57]  O. Rössler An equation for continuous chaos , 1976 .

[58]  José António Tenreiro Machado,et al.  Fractional State Space Analysis of Economic Systems , 2015, Entropy.

[59]  E. Campos-Cantón,et al.  Strange attractors generated by a fractional order switching system and its topological horseshoe , 2016 .

[60]  Georg A. Gottwald,et al.  On the Implementation of the 0-1 Test for Chaos , 2009, SIAM J. Appl. Dyn. Syst..

[61]  Mohammad Saleh Tavazoei,et al.  Chaotic attractors in incommensurate fractional order systems , 2008 .

[62]  M. Haeri,et al.  Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems , 2007 .

[63]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[64]  Adel Ouannas,et al.  A simple fractional-order chaotic system without equilibrium and its synchronization , 2018 .

[65]  Qun Ding,et al.  A New Two-Dimensional Map with Hidden Attractors , 2018, Entropy.

[66]  YangQuan Chen,et al.  A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..

[67]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium , 2015 .

[68]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[69]  Nikolay V. Kuznetsov,et al.  Hidden Oscillations in Aircraft Flight Control System with Input Saturation , 2013, PSYCO.

[70]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[71]  Sundarapandian Vaidyanathan,et al.  Analysis of a 4-D Hyperchaotic Fractional-Order Memristive System with Hidden Attractors , 2017 .

[72]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .