Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex.

The present study aimed to evaluate the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. The minimum inhibitory concentration was determined through the broth microdilution technique using the bacterial strains: Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The drugs norfloxacin, imipenem and gentamicin were used in the tests, and the compounds α-bisabolol and β-cyclodextrin; all the compounds were diluted in DMSO. To obtain the minimum inhibitory concentration (MIC) a serial microdilution of the substances in volumes corresponding to the sub-inhibitory concentration (MIC/8), and microdilution with the antibiotic until the penultimate well were performed. The results showed that β-cyclodextrin did not present synergistic effects when combined with the antibiotics. It was found that α-bisabolol presented a synergistic effect against S. aureus, when combined with the antibiotic norfloxacin. Moreover, α-bisabolol presented synergism against E. coli when combined with gentamicin. The results of this study show that α-bisabolol presents a modulatory synergistic effect for some antibiotics, as gentamicin, and this is an interesting result against multidrug resistant bacteria (MDR). By other side, the complexation of α-bisabolol with β-cyclodextrin apparently reduces the modulatory effect, maybe due the polarity enhancement of the polarity of α-bisabolol, affecting the interaction of this compound with the cell membrane bilayer. However, more studies are necessary to demonstrate or not these interactions.

[1]  H. Coutinho,et al.  In vitro anti-staphylococcal activity of Hyptis martiusii Benth against methicillin-resistant Staphylococcus aureus: MRSA strains , 2008 .

[2]  T. Uyar,et al.  Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. , 2014, Colloids and surfaces. B, Biointerfaces.

[3]  D. Ro,et al.  Enantioselective microbial synthesis of the indigenous natural product (-)-α-bisabolol by a sesquiterpene synthase from chamomile (Matricaria recutita). , 2014, The Biochemical journal.

[4]  E. Azzopardi,et al.  The enhanced permeability retention effect: a new paradigm for drug targeting in infection. , 2013, The Journal of antimicrobial chemotherapy.

[5]  Eckard Oberdisse,et al.  Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen – Medikamente gezielt einsetzen , 2006 .

[6]  R. Catão,et al.  Avaliação da atividade antimicrobiana do óleo essencial de sucupira (Pterodon emarginatus Vogel) , 2014 .

[7]  H. Coutinho,et al.  Enhancement of the Antibiotic Activity against a Multiresistant Escherichia coli by Mentha arvensis L. and Chlorpromazine , 2008, Chemotherapy.

[8]  M. Doble,et al.  Synergism between natural products and antibiotics against infectious diseases. , 2008, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[9]  L. Quintans-Júnior,et al.  Cyclodextrins: improving the therapeutic response of analgesic drugs: a patent review , 2015, Expert opinion on therapeutic patents.

[10]  J. C. Cardoso,et al.  Interaction of p-cymene with β-cyclodextrin , 2012, Journal of Thermal Analysis and Calorimetry.

[11]  K. Sluka,et al.  Enhanced analgesic activity by cyclodextrins – a systematic review and meta-analysis , 2015, Expert opinion on drug delivery.

[12]  Eric A. Johnson,et al.  Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone , 2003, Antimicrobial Agents and Chemotherapy.

[13]  J. V. Pereira,et al.  Atividade antimicrobiana do extrato de Anacardium occidentale Linn. em amostras multiresistentes de Staphylococcus aureus , 2007 .

[14]  O. Isaac,et al.  Pharmakologische Untersuchungen von Kamillen–Inhaltsstoffen – II. Neue Untersuchungen zur antiphlogistischen Wirkung des (–)–α–Bisabolols und der Bisabololoxide , 1979 .

[15]  C. Bindslev‐Jensen,et al.  The hairless guinea‐pig as a model for treatment of cumulative irritation in humans , 2006, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[16]  D. Livermore,et al.  Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[17]  U. Lindequist,et al.  Effects of some Components of the Essential Oil of Chamomile, Chamomilla recutita, on Histamine Release from Rat Mast Cells , 1996, Planta medica.

[18]  B. Gidwani,et al.  A Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs , 2015, BioMed research international.

[19]  N. Hădărugă Ficaria verna Huds. extracts and their β-cyclodextrin supramolecular systems , 2012, Chemistry Central Journal.

[20]  N. L. Saccaro A regulamentação de acesso a recursos genéticos e repartição de benefícios: disputas dentro e fora do Brasil , 2011 .

[21]  F. Paumgartten,et al.  Evaluation of mutagenic and antimutagenic activities of alpha-bisabolol in the Salmonella/microsome assay. , 2005, Mutation research.

[22]  C. Oliveira,et al.  Coordenação de metais a antibióticos como uma estratégia de combate à resistência bacteriana , 2011 .

[23]  R. Saltão,et al.  Ciclodextrinas em novos sistemas terapeuticos , 2001 .

[24]  Kavirajaa Pandian Sambasevam,et al.  Molecular Sciences Synthesis and Characterization of the Inclusion Complex of Β-cyclodextrin and Azomethine , 2022 .

[25]  E. Dias,et al.  Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. , 2015, Front. Microbiol..

[26]  D. Hădărugă,et al.  Inclusion complex of (−)-linalool and β-cyclodextrin , 2014, Journal of Thermal Analysis and Calorimetry.

[27]  Satoshi Ishii,et al.  Escherichia coli in the Environment: Implications for Water Quality and Human Health. , 2008, Microbes and environments.

[28]  S. Songkro,et al.  Investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[29]  Luciano da Silva Momesso,et al.  Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes , 2010 .

[30]  R. Ammar,et al.  Disposable screen-printed sensors for determination of duloxetine hydrochloride , 2012, Chemistry Central Journal.

[31]  M. DePristo,et al.  Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. , 2010, Molecular cell.

[32]  H. Wagner,et al.  Synergy research: approaching a new generation of phytopharmaceuticals. , 2009, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[33]  U. Banerjee,et al.  Biotechnological applications of cyclodextrins. , 2002, Biotechnology advances.

[34]  D. Macêdo,et al.  (-)-α-Bisabolol-induced gastroprotection is associated with reduction in lipid peroxidation, superoxide dismutase activity and neutrophil migration. , 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[35]  Hasan Ali Kiraz,et al.  Avaliação in vitro das características antimicrobianas de sugamadex , 2014 .

[36]  P. Alves,et al.  β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae , 2015 .

[37]  Gertrudes Corção,et al.  Pseudomonas aeruginosa: disseminação de resistência antimicrobiana em efluente hospitalar e água superficial , 2008 .

[38]  P. Silva Avaliação da Atividade Antimicrobiana de Compostos de Inclusão Formados Entre Sulfadiazina de Sódio e Ciclodextrinas. , 2015 .

[39]  Christopher Rex,et al.  Sugammadex: a selective relaxant-binding agent providing rapid reversal , 2010, Current opinion in anaesthesiology.

[40]  R. Pilla,et al.  Evaluation of biofilm formation using milk in a flow cell model and microarray characterization of Staphylococcus aureus strains from bovine mastitis. , 2014, Veterinary microbiology.

[41]  R. Lambert,et al.  Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non‐inhibitory concentration (NIC) values , 2000, Journal of applied microbiology.