Effects of elevated CO2 on nutrient cycling in a sweetgum plantation

[1]  B. Hungate,et al.  THE EFFECTS OF ELEVATED CO2 ON NUTRIENT DISTRIBUTION IN A FIRE‐ADAPTED SCRUB OAK FOREST , 2003 .

[2]  Stan D. Wullschleger,et al.  Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage , 2002 .

[3]  W. Schlesinger,et al.  The nitrogen budget of a pine forest under free air CO2 enrichment , 2002, Oecologia.

[4]  R. Susfalk,et al.  Ion exchange resin based soil solution lysimeters and snowmelt solution collectors , 2002 .

[5]  W. Schlesinger,et al.  Forest carbon balance under elevated CO2 , 2002, Oecologia.

[6]  D. Phillips,et al.  Advancing fine root research with minirhizotrons. , 2001, Environmental and experimental botany.

[7]  G. Katul,et al.  Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere , 2001, Nature.

[8]  R. Norby,et al.  Allometric determination of tree growth in a CO2‐enriched sweetgum stand , 2001 .

[9]  R. Norby,et al.  Sap velocity and canopy transpiration in a sweetgum stand exposed to free‐air CO2 enrichment (FACE) , 2001 .

[10]  Philip Ineson,et al.  Elevated CO2, litter chemistry, and decomposition: a synthesis , 2001, Oecologia.

[11]  W. Schlesinger,et al.  Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment , 2001 .

[12]  W. Cheng,et al.  Effects of CO2 and N fertilization on decomposition and N immobilization in ponderosa pine litter , 2000, Plant and Soil.

[13]  W. Cheng,et al.  Effects of [CO2] and nitrogen fertilization on soils planted with ponderosa pine , 2000, Plant and Soil.

[14]  R. Dewar,et al.  Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO2 concentration. , 2000 .

[15]  W. Schlesinger,et al.  EFFECTS OF FREE-AIR CO2 ENRICHMENT (FACE) ON BELOWGROUND PROCESSES IN A PINUS TAEDA FOREST , 2000 .

[16]  P. Curtis,et al.  GAS EXCHANGE, LEAF NITROGEN, AND GROWTH EFFICIENCY OF POPULUS TREMULOIDES IN A CO2-ENRICHED ATMOSPHERE , 2000 .

[17]  P. Curtis,et al.  INTERACTIVE EFFECTS OF ATMOSPHERIC CO2 AND SOIL‐N AVAILABILITY ON FINE ROOTS OF POPULUS TREMULOIDES , 2000 .

[18]  J. Coleman,et al.  Carbon budgeting in plant–soil mesocosms under elevated CO2: locally missing carbon? , 2000 .

[19]  Stan D. Wullschleger,et al.  Tree responses to rising CO2 in field experiments: implications for the future forest , 1999 .

[20]  J. Nagy,et al.  A free‐air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2 , 1999 .

[21]  E. Paul,et al.  Soil microbiology and biochemistry. , 1998 .

[22]  D. Johnson,et al.  Effects of CO2 and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine , 1997, Plant and Soil.

[23]  D. Phillips,et al.  Effects of elevated CO(2) and nitrogen on the synchrony of shoot and root growth in ponderosa pine. , 1996, Tree physiology.

[24]  W. Schlesinger,et al.  Elevated Atmospheric Carbon Dioxide in Agroecosystems Affects Groundwater Quality , 1996 .

[25]  Jerry M. Melillo,et al.  The Role of Nitrogen in the Response of Forest Net Primary Production to Elevated Atmospheric Carbon Dioxide , 1995 .

[26]  G. Berntson,et al.  Belowground positive and negative feedbacks on CO2 growth enhancement , 1995, Plant and Soil.

[27]  A. Dobermann,et al.  Nutrient adsorption kinetics of ion exchange resin capsules: A study with soils of international origin , 1994 .

[28]  T. Tschaplinski,et al.  Nitrogen fertilization strategies in a short-rotation sycamore plantation , 1994 .

[29]  A. Rowland,et al.  Lignin and cellulose fractionation in decomposition studies using acid‐detergent fibre methods , 1994 .

[30]  P. Curtis,et al.  Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles , 1993, Plant and Soil.

[31]  C. Körner,et al.  Responses to elevated carbon dioxide in artificial tropical ecosystems. , 1992, Science.

[32]  H. Rogers,et al.  Response of plant roots to elevated atmospheric carbon dioxide , 1992 .

[33]  Jae-E. Yang,et al.  Diffusion Kinetics of Multinutrient Accumulation by Mixed-Bed Ion-Exchange Resin , 1992 .

[34]  E. K. Sadanandan Nambiar,et al.  Nutrient retranslocation in temperate conifers. , 1991, Tree physiology.

[35]  S. E. Lindberg,et al.  Nutrient Cycling in Red Spruce Forests of the Great Smoky Mountains , 1991 .

[36]  R. Norby,et al.  Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO(2) enrichment. , 1987, Tree physiology.

[37]  B. Strain Physiological and ecological controls on carbon sequestering in terrestrial ecosystems , 1985 .

[38]  D. Richter,et al.  Cycling of organic and inorganic sulphur in a chestnut oak forest , 1982, Oecologia.

[39]  Dale W. Johnson,et al.  16 – Interactions between CO2 and Nitrogen in Forests: Can We Extrapolate from the Seedling to the Stand Level? , 1996 .

[40]  Dale W. Johnson,et al.  Atmospheric Deposition and Forest Nutrient Cycling , 1992, Ecological Studies.

[41]  Dale W. Johnson Nitrogen Retention in Forest Soils , 1992 .

[42]  N. W. Foster,et al.  Retention or Loss of N in IFS Sites and Evaluation of Relative Importance of Processes , 1992 .

[43]  David W. Johnson,et al.  Atmospheric deposition and forest nutrient cycling. A synthesis of the Integrated Forest Study. , 1992 .

[44]  Dale W. Johnson,et al.  Nutrient cycling in forests of Walker Branch Watershed, Tennessee : roles of uptake and leaching in causing soil changes , 1990 .

[45]  P. Brookes,et al.  AN EXTRACTION METHOD FOR MEASURING SOIL MICROBIAL BIOMASS C , 1987 .

[46]  D. Cole,et al.  Elemental cycling in forest ecosystems , 1981 .