Visualizing Large Spatial Time Series Data on Mobile Devices: Combining the HeatTile System with a Progressive Loading Approach

This paper introduces an approach for visualizing large spatial time series data sets on mobile devices. The HeatTile system (Meier et al. 2014) is used and extended with a progressive loading approach, the stream approach. By combining those two approaches, this study aimed to overcome the performance and bandwidth limitations inherent to mobile devices. This chapter focuses on the technological advantages of the presented approach in a performance comparison with other common approaches. Furthermore, an animated time series visualization is introduced, as well as an interface designed specifically for the presented method in order to emphasize the advantages of the approach. To further highlight the possible applications of the method, two real-world use cases are presented.

[1]  Monika Sester,et al.  Continuous Generalization for Visualization on Small Mobile Devices , 2004, SDH.

[2]  Gennady L. Andrienko,et al.  Exploratory spatio-temporal visualization: an analytical review , 2003, J. Vis. Lang. Comput..

[3]  Peter C. Verhoef,et al.  Erim Report Series Research in Management Consumer Perception and Evaluation of Waiting Time: a Field Experiment Bibliographic Data and Classifications , 2022 .

[4]  Johannes Trame Exploring the Lineage of Volunteered Geographic Information with Heat Maps , 2010 .

[5]  Jason Dykes,et al.  Seeking structure in records of spatio-temporal behaviour: visualization issues, efforts and applications , 2003, Comput. Stat. Data Anal..

[6]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[7]  Keith C. Clarke,et al.  Interactive Visual Exploration of a Large Spatio-temporal Dataset: Reflections on a Geovisualization Mashup. , 2007, IEEE Transactions on Visualization and Computer Graphics.

[8]  Frank Heidmann,et al.  Heattile, a New Method for Heatmap Implementations for Mobile Web-Based Cartographic Applications , 2014 .

[9]  Tovi Grossman,et al.  Swift: reducing the effects of latency in online video scrubbing , 2012, CHI.

[10]  J. Dykes,et al.  Exploring Road Incident Data with Heat Maps , 2011 .

[11]  B. Lenntorp,et al.  Time-geography – at the end of its beginning , 1999 .

[12]  Alan M. MacEachren,et al.  Constructing knowledge from multivariate spatiotemporal data: integrating geographical visualization with knowledge discovery in database methods , 1999, Int. J. Geogr. Inf. Sci..

[13]  து.நித்யா,et al.  Server Sent Events , 2015 .

[14]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[15]  Richard O. Sinnott,et al.  Visualisation support for exploring urban space and place , 2012 .

[16]  Markus Fiedler,et al.  Waiting times in quality of experience for web based services , 2012, 2012 Fourth International Workshop on Quality of Multimedia Experience.

[17]  Menno-Jan Kraak,et al.  A Visualization Environment for the Space-Time-Cube , 2004, SDH.

[18]  Gennady L. Andrienko,et al.  Interactive analysis of event data using space-time cube , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[19]  Brad A. Myers,et al.  The importance of percent-done progress indicators for computer-human interfaces , 1985, CHI '85.

[20]  Virpi Roto,et al.  Need for non-visual feedback with long response times in mobile HCI , 2005, WWW '05.

[21]  Portable Network Graphics ( PNG ) Specification ( Second Edition ) Information technology — Computer graphics and image processing — Portable Network , 2022 .

[22]  Menno-Jan Kraak,et al.  Geovisualization and time : new opportunities for the space - time cube , 2008 .

[23]  Denzil Ferreira,et al.  HotCity: enhancing ubiquitous maps with social context heatmaps , 2013, MUM.

[24]  Mor Naaman,et al.  CityBeat: real-time social media visualization of hyper-local city data , 2014, WWW.

[25]  Daniel J. Wigdor,et al.  Dive in!: enabling progressive loading for real-time navigation of data visualizations , 2014, CHI.

[26]  Michael S. Borella,et al.  Internet delay effects: how users perceive quality, organization, and ease of use of information , 1997, CHI Extended Abstracts.

[27]  Gennady L. Andrienko,et al.  Designing Visual Analytics Methods for Massive Collections of Movement Data , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[28]  Fiona Fui-Hoon Nah,et al.  A study on tolerable waiting time: how long are Web users willing to wait? , 2004, AMCIS.