Derived categories of small toric Calabi-Yau 3-folds and counting invariants

We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wall-crossing formula for the generating function of the counting invariants of perverse coherent systems. As an application we provide certain equations on Donaldson-Thomas, Pandeharipande-Thomas and Szendroi's invariants. Finally, we show that moduli spaces associated with a quiver given by successive mutations are realized as the moduli spaces associated the original quiver by changing the stability conditions.

[1]  Yinan Song,et al.  A theory of generalized Donaldson–Thomas invariants , 2008, 0810.5645.

[2]  M theory and topological strings. 2. , 1998, hep-th/9809187.

[3]  K. Yoshioka,et al.  Perverse coherent sheaves on blow-up. II. Wall-crossing and Betti numbers formula , 2008, 0806.0463.

[4]  Michel Van den Bergh Three-dimensional flops and noncommutative rings , 2002 .

[5]  Yukinobu Toda Birational Calabi-Yau 3-folds and BPS state counting , 2007, 0707.1643.

[6]  H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .

[7]  J. Bryan,et al.  Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds , 2008, 0802.3948.

[8]  A. Rudakov Stability for an Abelian Category , 1997 .

[9]  K. Ueda,et al.  On moduli spaces of quiver representations associated with dimer models (Higher Dimensional Algebraic Varieties and Vector Bundles) , 2007, 0710.1898.

[10]  Hiraku Nakajima Lectures on Hilbert Schemes of Points on Surfaces , 1999 .

[11]  A. Kuznetsov Quiver varieties and Hilbert schemes , 2001, math/0111092.

[12]  Ben Young,et al.  Computing a pyramid partition generating function with dimer shuffling , 2007, J. Comb. Theory, Ser. A.

[13]  A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations , 1998, math/9806111.

[14]  Yan Soibelman,et al.  Stability structures, motivic Donaldson-Thomas invariants and cluster transformations , 2008, 0811.2435.

[15]  K. Nagao Refined open non-commutative Donaldson-Thomas invariants for small crepant resolutions , 2009, 0907.3784.

[16]  The vertex on a strip , 2004, hep-th/0410174.

[17]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[18]  Richard P. Thomas,et al.  Curve counting via stable pairs in the derived category , 2007, 0707.2348.

[19]  Richard P. Thomas,et al.  Stable pairs and BPS invariants , 2007, 0711.3899.

[20]  J. Brasselet Introduction to toric varieties , 2004 .

[21]  Tom Bridgeland Flops and derived categories , 2000 .

[22]  Quiver varieties and finite dimensional representations of quantum affine algebras , 1999, math/9912158.

[23]  H. Nakajima,et al.  Counting invariant of perverse coherent sheaves and its wall-crossing , 2008, 0809.2992.

[24]  Nathan Broomhead Dimer Models and Calabi-Yau Algebras , 2009, 0901.4662.

[25]  Raf Bocklandt Graded Calabi Yau algebras of dimension 3 , 2006 .

[26]  J. Potier Systèmes cohérents et structures de niveau , 1993 .

[27]  W. Crawley-Boevey Decomposition of Marsden–Weinstein Reductions for Representations of Quivers , 2000, Compositio Mathematica.

[28]  K. Yoshioka,et al.  Perverse coherent sheaves on blow-up. I. a quiver description , 2008, 0802.3120.

[29]  K. Ueda,et al.  On moduli spaces of quiver representations associated with brane tilings , 2007 .

[30]  H. Nakajima Quiver varieties and Kac-Moody algebras , 1998 .

[31]  S. Mozgovoy,et al.  On the noncommutative Donaldson-Thomas invariants arising from brane tilings , 2008, 0809.0117.

[32]  Den Bergh,et al.  Non-commutative Crepant Resolutions , 2002 .

[33]  K. Nagao Non-commutative Donaldson-Thomas theory and vertex operators , 2009, 0910.5477.

[34]  Configurations in abelian categories: IV. Invariants and changing stability conditions , 2004, math/0410268.

[35]  Richard P. Thomas,et al.  Hilbert schemes and stable pairs: GIT and derived category wall crossings , 2009, 0903.1444.