The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution

[1]  Liwen Qian,et al.  A Note on Regularized Shannon's Sampling Formulae , 2000, math/0005003.

[2]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[3]  Guo-Wei Wei,et al.  Solving quantum eigenvalue problems by discrete singular convolution , 2000 .

[4]  G. W. Wei A unified method for solving Maxwell's equations , 1999, 1999 Asia Pacific Microwave Conference. APMC'99. Microwaves Enter the 21st Century. Conference Proceedings (Cat. No.99TH8473).

[5]  G. W. Wei,et al.  Generalized Perona-Malik equation for image restoration , 1999, IEEE Signal Processing Letters.

[6]  K. M. Liew,et al.  Vibration of Mindlin plates. Programming the p‐version Ritz method. (Liew, K. M., Wang, C. M., Xiang, Y., Kitipornchai, S.) , 1999 .

[7]  D. J. Gorman,et al.  THE VIBRATION OF MINDLIN PLATES , 1999 .

[8]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[9]  Chang Shu,et al.  Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates , 1999 .

[10]  Mark J. Ablowitz,et al.  On the Numerical Solution of the Sine-Gordon Equation , 1996 .

[11]  Alfred G. Striz,et al.  Static analysis of structures by the quadrature element method(QEM) , 1994 .

[12]  P.A.A. Laura,et al.  Analysis of vibrating rectangular plates with non-uniform boundary conditions by using the differential quadrature method , 1994 .

[13]  K. M. Liew,et al.  On the Use of the Substructure Method for Vibration Analysis of Rectangular Plates with Discontinuous Boundary Conditions , 1993 .

[14]  Xinwei Wang,et al.  A NEW APPROACH IN APPLYING DIFFERENTIAL QUADRATURE TO STATIC AND FREE VIBRATIONAL ANALYSES OF BEAMS AND PLATES , 1993 .

[15]  John W. Leonard,et al.  VIBRATION AND BUCKLING OF PLATES WITH MIXED BOUNDARY CONDITIONS , 1990 .

[16]  C. Chia Non-linear vibration of anisotropic rectangular plates with non-uniform edge constraints , 1985 .

[17]  D. J. Gorman An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions , 1984 .

[18]  Y. K. Cheung,et al.  Flexural free vibrations of rectangular plates with complex support conditions , 1984 .

[19]  F. E. Eastep,et al.  Natural frequencies of circular plates with partially free, partially clamped edges , 1982 .

[20]  Yoshihiro Narita,et al.  Application of a series-type method to vibration of orthotropic rectangular plates with mixed boundary conditions , 1981 .

[21]  R. H. Gutierrez,et al.  Vibrations of Rectangular Plates With Nonuniform Elastic Edge Supports , 1980 .

[22]  B. G. Prakash,et al.  Free vibration of rectangular plates , 1980 .

[23]  Katsutoshi Okazaki,et al.  Vibrations of a Circular Plate Having Partly Clamped or Partly Simply Supported Boundary , 1976 .

[24]  G. Venkateswara Rao,et al.  Vibration of rectangular plates with mixed boundary conditions , 1973 .

[25]  Leon M Keer,et al.  Eigenvalue Problems of Rectangular Plates With Mixed Edge Conditions , 1972 .

[26]  C. C. Bartlett THE VIBRATION AND BUCKLING OF A CIRCULAR PLATE CLAMPED ON PARTOF ITS BOUNDARY AND SIMPLY SUPPORTED ON THE REMAINDER , 1963 .

[27]  Muneaki Kurata,et al.  Natural Vibrations of Patricianly Clamped Plates , 1963 .

[28]  G. B. Warburton,et al.  The Vibration of Rectangular Plates , 1954 .

[29]  G. Wei,et al.  A new algorithm for solving some mechanical problems , 2001 .

[30]  G. Wei Discrete singular convolution for beam analysis , 2001 .

[31]  G. Wei,et al.  VIBRATION ANALYSIS BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[32]  Chien Ming Wang,et al.  Computational mechanics for the next millennium : proceedings of APCOM '99, Fourth Asia-Pacific Conference on Computational Mechanics , 1999 .

[33]  K. M. Liew,et al.  Vibration Analysis of Plates by the pb-2 Rayleigh-Ritz Method: Mixed Boundary Conditions,Reentrant Corners, and Internal Curved Supports , 1992 .

[34]  T. Mizusawa,et al.  Vibration and buckling of rectangular plates with nonuniform elastic constraints in rotation , 1987 .

[35]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[36]  Y. Hirano,et al.  Vibrations of a Circular Plate Having Partly Clamped or Partly Simply Supported , 1975 .

[37]  F. Holzweißig,et al.  A. W. Leissa, Vibration of Plates. (Nasa Sp‐160). VII + 353 S. m. Fig. Washington 1969. Office of Technology Utilization National Aeronautics and Space Administration. Preis brosch. $ 3.50 , 1971 .

[38]  Minoru Hamada,et al.  Fundamental Frequencies of Simply Supported but Partially Clamped Square Plates , 1962 .