De Groot duality and models of choice: angels, demons and nature

We introduce convex–concave duality for various models of non-deterministic choice, probabilistic choice and the two of them combined. This complements the well-known duality of stably compact spaces in a pleasing way: convex–concave duality swaps angelic and demonic choice, and leaves probabilistic choice invariant.

[1]  Klaus Keimel,et al.  Predicate transformers for extended probability and non-determinism , 2009, Math. Struct. Comput. Sci..

[2]  Klaus Keimel,et al.  Measure extension theorems for T0-spaces , 2005 .

[3]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[4]  Klaus Keimel Topological Cones: Foundations for a Domain Theoretical Semantics Combining Probability and Nondeterminism , 2005, MFPS.

[5]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electronic Notes in Theoretical Computer Science.

[6]  Martín Hötzel Escardó,et al.  Synthetic Topology: of Data Types and Classical Spaces , 2004, DTMPP.

[7]  Achim Jung,et al.  Stably Compact Spaces and the Probabilistic Powerspace construction , 2004, DTMPP.

[8]  A. W. Roscoe,et al.  Topology and category theory in computer science , 1991 .

[9]  Itzhak Gilboa,et al.  Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..

[10]  Christos H. Papadimitriou,et al.  Games against nature , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[11]  Steven J. Vickers,et al.  A universal characterization of the double powerlocale , 2004, Theor. Comput. Sci..

[12]  Reinhold Heckmann Abstract valuations: A novel representation of Plotkin power domain and Vietoris hyperspace , 1997, MFPS.

[13]  Jimmie D. Lawson The Versatile Continuous Order , 1987, MFPS.

[14]  Michael W. Mislove,et al.  Topology, domain theory and theoretical computer science , 1998 .

[15]  Jean Goubault-Larrecq,et al.  Choquet-Kendall-Matheron theorems for non-Hausdorff spaces , 2011, Math. Struct. Comput. Sci..

[16]  Regina Tix,et al.  Continuous D-cones: convexity and powerdomain constructions , 1999 .

[17]  James Worrell,et al.  An axiomatics for categories of transition systems as coalgebras , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[18]  D. A. Edwards On the existence of probability measures with given marginals , 1978 .

[19]  Klaus Keimel,et al.  The probabilistic powerdomain for stably compact spaces , 2004, Theor. Comput. Sci..

[20]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[21]  Michael W. Mislove Nondeterminism and Probabilistic Choice: Obeying the Laws , 2000, CONCUR.

[22]  D. Denneberg Non-additive measure and integral , 1994 .

[23]  Klaus Keimel,et al.  Semantic Domains for Combining Probability and Non-Determinism , 2005, Electron. Notes Theor. Comput. Sci..

[24]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[25]  Abbas Edalat,et al.  An Extension Result for Continuous Valuations , 2000 .

[26]  Jean Goubault-Larrecq,et al.  Continuous Previsions , 2007, CSL.

[27]  Gordon D. Plotkin A domain-theoretic Banach–Alaoglu theorem , 2006, Mathematical Structures in Computer Science.

[28]  G. Choquet Theory of capacities , 1954 .

[29]  Jean Goubault-Larrecq,et al.  Simulation Hemi-metrics between Infinite-State Stochastic Games , 2008, FoSSaCS.

[30]  Jean Goubault-Larrecq Prevision Domains and Convex Powercones , 2008, FoSSaCS.

[31]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[32]  Jean Goubault-Larrecq,et al.  Continuous Capacities on Continuous State Spaces , 2007, ICALP.

[33]  A. Jung,et al.  Cartesian closed categories of domains , 1989 .

[34]  Mauricio. Alvarez Manilla Measure theoretic results for continuous valuations on partially ordered spaces , 2001 .