Some results on fixed points of α-ψ-Ciric generalized multifunctions
暂无分享,去创建一个
[1] L. Ciric,et al. Generalized contractions and fixed-point theorems. , 1971 .
[2] L. Ciric,et al. A generalization of Banach’s contraction principle , 1974 .
[3] Vladimir Rakocevic,et al. Quasi-contraction on a cone metric space , 2009, Appl. Math. Lett..
[4] Stojan Radenovic,et al. Remarks on "Quasi-contraction on a cone metric space" , 2009, Appl. Math. Lett..
[5] Naseer Shahzad,et al. Some notes on fixed points of quasi-contraction maps , 2010, Appl. Math. Lett..
[6] Naseer Shahzad,et al. Some fixed point generalizations are not real generalizations , 2011 .
[7] A. Amini-Harandi,et al. Fixed point theory for set-valued quasi-contraction maps in metric spaces , 2011, Appl. Math. Lett..
[8] J. Jachymski,et al. Equivalent conditions for generalized contractions on (ordered) metric spaces , 2011 .
[9] N. Shahzad,et al. Some fixed point results on a metric space with a graph , 2012 .
[10] Naseer Shahzad,et al. On fixed points of quasi-contraction type multifunctions , 2012, Appl. Math. Lett..
[11] Bessem Samet,et al. Fixed point theorems for α–ψ-contractive type mappings , 2012 .
[12] Naseer Shahzad,et al. On fixed points of α-ψ-contractive multifunctions , 2012 .
[13] S. Arabia,et al. Fixed points of a new type of contractive mappings and multifunctions , 2013 .
[14] Maher Berzig,et al. Generalization of the Banach contraction principle , 2013, 1310.0995.