Point-Based Rendering for Homogeneous Participating Media with Refractive Boundaries

Illumination effects in translucent materials are a combination of several physical phenomena: refraction at the surface, absorption and scattering inside the material. Because refraction can focus light deep inside the material, where it will be scattered, practical illumination simulation inside translucent materials is difficult. In this paper, we present an a Point-Based Global Illumination method for light transport on homogeneous translucent materials with refractive boundaries. We start by placing light samples inside the translucent material and organizing them into a spatial hierarchy. At rendering, we gather light from these samples for each camera ray. We compute separately the sample contributions for single, double and multiple scattering, and add them. We present two implementations of our algorithm: an offline version for high-quality rendering and an interactive GPU implementation. The offline version provides significant speed-ups and reduced memory footprints compared to state-of-the-art algorithms, with no visible impact on quality. The GPU version yields interactive frame rates: 30 fps when moving the viewpoint, 25 fps when editing the light position or the material parameters.

[1]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[2]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[3]  Shree K. Nayar,et al.  Acquiring scattering properties of participating media by dilution , 2006, ACM Trans. Graph..

[4]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[5]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[6]  Per H. Christensen,et al.  Efficient simulation of light transport in scenes with participating media using photon maps , 1998, SIGGRAPH.

[7]  Matthias Zwicker,et al.  The Beam Radiance Estimate for Volumetric Photon Mapping , 2008, SIGGRAPH '08.

[8]  Stephen Lin,et al.  Line space gathering for single scattering in large scenes , 2010, SIGGRAPH 2010.

[9]  Kwan-Liu Ma,et al.  Real-Time Volume Rendering in Dynamic Lighting Environments Using Precomputed Photon Mapping , 2013, IEEE Transactions on Visualization and Computer Graphics.

[10]  Anton Kaplanyan,et al.  Cascaded light propagation volumes for real-time indirect illumination , 2010, I3D '10.

[11]  Matthias Zwicker,et al.  Progressive photon beams , 2011, ACM Trans. Graph..

[12]  Derek Nowrouzezahrai,et al.  Progressive Virtual Beam Lights , 2012, Comput. Graph. Forum.

[13]  Diego Gutierrez,et al.  Separable Subsurface Scattering , 2015, Comput. Graph. Forum.

[14]  Miloš Hašan,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, SIGGRAPH 2009.

[15]  Pascal Gautron,et al.  Transmittance function mapping , 2011, SI3D.

[16]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[17]  Derek Nowrouzezahrai,et al.  A comprehensive theory of volumetric radiance estimation using photon points and beams , 2011, TOGS.

[18]  Toshiya Hachisuka,et al.  Directional Dipole Model for Subsurface Scattering , 2014, ACM Trans. Graph..

[19]  Per H. Christensen,et al.  Point-Based Approximate Color Bleeding , 2008 .

[20]  Diego Gutierrez,et al.  Screen-space perceptual rendering of human skin , 2009, TAP.

[21]  K. Bala,et al.  Multidimensional lightcuts , 2006, SIGGRAPH 2006.

[22]  S. Nayar,et al.  An empirical BSSRDF model , 2009, SIGGRAPH 2009.

[23]  Wojciech Jarosz,et al.  Beyond points and beams , 2017, ACM Trans. Graph..

[24]  Hans-Peter Seidel,et al.  DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering , 2022 .

[25]  Nicolas Holzschuch,et al.  Accurate Computation of Single Scattering in Participating Media with Refractive Boundaries , 2015, Comput. Graph. Forum.

[26]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[27]  Kun Zhou,et al.  Interactive relighting of dynamic refractive objects , 2008, SIGGRAPH 2008.

[28]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[29]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[30]  Hans-Peter Seidel,et al.  Interactive volume caustics in single-scattering media , 2010, I3D '10.

[31]  Rui Wang,et al.  Accurate Translucent Material Rendering under Spherical Gaussian Lights , 2012, Comput. Graph. Forum.

[32]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[33]  Yue Gao,et al.  Real‐time homogenous translucent material editing , 2007, Comput. Graph. Forum.

[34]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..

[35]  James T. Kajiya,et al.  The rendering equation , 1998 .

[36]  Adam Arbree,et al.  Single‐pass Scalable Subsurface Rendering with Lightcuts , 2008, Comput. Graph. Forum.