Hypermetrics in geometry of numbers

A nite semimetric d on a set X is hypermetric if it satisses the inequality P i;j2X b i b j d ij 0 for all b 2 Z X with P i2X b i = 1. Hypermetricity turns out to be the appropriate notion for describing the metric structure of holes in lattices. We survey hypermetrics, their connections with lattices and applications.

[1]  Peter Winkler,et al.  Collapse of the Metric Hierarchy for Bipartite Graphs , 1986, Eur. J. Comb..

[2]  Patrice Assouad Sur les Inégalités Valides dans L1 , 1984, Eur. J. Comb..

[3]  R. M. Erdahl,et al.  The Empty Sphere Part II , 1988 .

[4]  Sergey V. Shpectorov,et al.  On Scale Embeddings of Graphs into Hypercubes , 1993, Eur. J. Comb..

[5]  R. M. Erdahl,et al.  The empty sphere , 1987 .

[6]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[7]  Endre Boros,et al.  Cut-Polytopes, Boolean Quadric Polytopes and Nonnegative Quadratic Pseudo-Boolean Functions , 1993, Math. Oper. Res..

[8]  Michel Deza,et al.  Extreme hypermetrics and L-polytopes , 1992 .

[9]  Michel Deza,et al.  Facets for the cut cone I , 1992, Math. Program..

[10]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[11]  Cid C. de Souza,et al.  Some New Classes of Facets for the Equicut Polytope , 1995, Discret. Appl. Math..

[12]  Paul M. Weichsel,et al.  Distance regular subgraphs of a cube , 1992, Discret. Math..

[13]  Paul M. Weischel Distance regular subgraphs of a cube , 1992 .

[14]  Dragoš Cvetković,et al.  Graphs related to exceptional root systems , 1976 .

[15]  S S Ryshkov,et al.  Layerwise construction of L-bodies of lattices , 1989 .

[16]  David-Olivier Jaquet-Chiffelle,et al.  Énumération complète des classes de formes parfaites en dimension 7 , 1993 .

[17]  M. R. Rao,et al.  Facets of the K-partition Polytope , 1995, Discret. Appl. Math..

[18]  Michel Deza,et al.  New Results on Facets of the Cut Cone , 1990, Conference on Integer Programming and Combinatorial Optimization.

[19]  David Avis,et al.  A Bound on the K-gonality of Facets of the Hypermetric Cone and Related Complexity Problems , 1992, Comput. Geom..

[20]  Neil J. A. Sloane,et al.  The Cell Structures of Certain Lattices , 1991 .

[21]  Robert M. Erdahl A cone of inhomogeneous second-order polynomials , 1992, Discret. Comput. Geom..

[22]  Caterina De Simone,et al.  Collapsing and lifting for the cut cone , 1994, Discret. Math..

[23]  Michel Deza,et al.  The even and odd cut polytopes , 1993, Discret. Math..

[24]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[25]  David Avis,et al.  All the Facets of the Six-point Hamming Cone , 1989, Eur. J. Comb..

[26]  N. S. Barnett,et al.  Private communication , 1969 .

[27]  Arnold Neumaier Some Relations between Roots, Holes, and Pillars , 1987, Eur. J. Comb..

[28]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[29]  Noga Alon The CW-Inequalities for Vectors in l1 , 1990, Eur. J. Comb..

[30]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[31]  David Avis,et al.  Metric extensions and the L1 hierarchy , 1994, Discret. Math..

[32]  David Avis,et al.  Hypermetric Spaces and the Hamming Cone , 1981, Canadian Journal of Mathematics.

[33]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[34]  P. Assouad,et al.  Espaces Métriques Plongeables Dans Un Hypercube: Aspects Combinatoires , 1980 .

[35]  Franz Rendl,et al.  Nonpolyhedral Relaxations of Graph-Bisection Problems , 1995, SIAM J. Optim..

[36]  E. P. Baranovskii,et al.  CLASSICAL METHODS IN THE THEORY OF LATTICE PACKINGS , 1979 .

[37]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[38]  Michel Deza,et al.  L-polytopes and Equiangular Lines , 1995, Discret. Appl. Math..

[39]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[40]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.