Tight bounds for online vector bin packing

In the d-dimensional bin packing problem (VBP), one is given vectors x<sub>1</sub>,x<sub>2</sub>, ... ,x<sub>n</sub> ∈ R<sup>d</sup> and the goal is to find a partition into a minimum number of feasible sets: {1,2 ... ,n} = ∪<sub>i</sub><sup>s</sup> B<sub>i</sub>. A set B<sub>i</sub> is feasible if ∑<sub>j ∈ B<sub>i</sub></sub> x<sub>j</sub> ≤ 1, where 1 denotes the all 1's vector. For online VBP, it has been outstanding for almost 20 years to clarify the gap between the best lower bound Ω(1) on the competitive ratio versus the best upper bound of O(d). We settle this by describing a Ω(d<sup>1-ε</sup>) lower bound. We also give strong lower bounds (of Ω(d<sup>1/B-ε</sup>) ) if the bin size B ∈ Z<sub>+</sub> is allowed to grow. Finally, we discuss almost-matching upper bound results for general values of B; we show an upper bound whose exponent is additively "shifted by 1" from the lower bound exponent.

[1]  Gerhard J. Woeginger,et al.  On-line Packing and Covering Problems , 1996, Online Algorithms.

[2]  Michael E. Saks,et al.  An on-line graph coloring algorithm with sublinear performance ratio , 1989, Discret. Math..

[3]  Sandy Irani Coloring inductive graphs on-line , 2005, Algorithmica.

[4]  Joseph Naor,et al.  Online Primal-Dual Algorithms for Covering and Packing Problems , 2005, ESA.

[5]  Magnús M. Halldórsson,et al.  Lower bounds for on-line graph coloring , 1992, SODA '92.

[6]  Raouf Boutaba,et al.  Cloud computing: state-of-the-art and research challenges , 2010, Journal of Internet Services and Applications.

[7]  Jan Vondrák,et al.  Adaptivity and approximation for stochastic packing problems , 2005, SODA '05.

[8]  Leah Epstein,et al.  On variable sized vector packing , 2003, Acta Cybern..

[9]  Sundar Vishwanathan Randomized Online Graph Coloring , 1992, J. Algorithms.

[10]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[11]  Sanjeev Khanna,et al.  On Multidimensional Packing Problems , 2004, SIAM J. Comput..

[12]  Magnús M. Halldórsson Online coloring known graphs , 1999, SODA '99.

[13]  Edward G. Coffman,et al.  Approximation algorithms for bin packing: a survey , 1996 .

[14]  András Gyárfás,et al.  On-line and first fit colorings of graphs , 1988, J. Graph Theory.

[15]  Gerhard J. Woeginger,et al.  On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..

[16]  Gerhard J. Woeginger,et al.  A Lower Bound for On-Line Vector-Packing Algorithms , 1993, Acta Cybern..

[17]  Roozbeh Farahbod,et al.  Dynamic Resource Allocation in Computing Clouds Using Distributed Multiple Criteria Decision Analysis , 2010, 2010 IEEE 3rd International Conference on Cloud Computing.

[18]  Guochuan Zhang,et al.  On Variable-Sized Bin Packing , 2007 .

[19]  Rina Panigrahy,et al.  Heuristics for Vector Bin Packing , 2011 .

[20]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[21]  Jan Vondrák,et al.  Approximating the stochastic knapsack problem: the benefit of adaptivity , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[22]  LEAH EPSTEIN,et al.  New Bounds for Variable-Sized Online Bin Packing , 2003, SIAM J. Comput..

[23]  Sanjeev Khanna,et al.  On multi-dimensional packing problems , 2004, SODA '99.