In-plane antiferromagnetic moments and magnetic polaron in the axion topological insulator candidate EuIn2As2

Topological insulator with antiferromagnetic order can serve as an ideal platform to realize axion electrodynamics. In this paper, we report a systematic study of the axion topological insulator candidate ${\mathrm{EuIn}}_{2}{\mathrm{As}}_{2}$. A linear energy dispersion across the Fermi level reveals a hole-type Fermi pocket. The orientation of the magnetic moment for ground state is determined within the $ab$-plane by anisotropic magnetic behavior. Besides long-range antiferromagnetic order, magnetization and magnetotransport measurements indicate existence of the ferromagnetic orders and ferromagnetic correlation, suggesting the formation of the magnetic polarons. These ferromagnetic clusters can persist above the antiferromagnetic transition leading to unconventional transport properties. Our results suggest multiple magnetic orders and states in ${\mathrm{EuIn}}_{2}{\mathrm{As}}_{2}$, which is vital to understanding its topological nature.

[1]  Y. Shapira,et al.  Magnetic Phase Diagram of MnF2from Ultrasonic and Differential Magnetization Measurements , 1970 .

[2]  F. Wilczek,et al.  Two applications of axion electrodynamics. , 1987, Physical review letters.

[3]  Figueiredo,et al.  Magnetic phase diagram of NiCl2 , 1988, Physical review. B, Condensed matter.

[4]  P. Schlottmann Some exact results for dilute mixed-valent and heavy-fermion systems , 1989 .

[5]  P. Littlewood,et al.  Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors , 1998, Nature.

[6]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[7]  J. Fettinger,et al.  Magnetic properties and negative colossal magnetoresistance of the rare earth Zintl phase EuIn2As2. , 2008, Inorganic chemistry.

[8]  Jing Wang,et al.  Dynamical axion field in topological magnetic insulators , 2009, 0908.1537.

[9]  T. M. Garitezi,et al.  Electron spin resonance of the intermetallic antiferromagnet EuIn2As2 , 2012 .

[10]  Hai-Feng Li Possible ground states and parallel magnetic-field-driven phase transitions of collinear antiferromagnets , 2016, npj Computational Materials.

[11]  S. Rezende,et al.  Spin-flop transition in the easy-plane antiferromagnet nickel oxide , 2017 .

[12]  Y. Aiura,et al.  Rotatable high-resolution ARPES system for tunable linear-polarization geometry , 2017, Journal of synchrotron radiation.

[13]  Kun Yang,et al.  Field-induced topological phase transition from a three-dimensional Weyl semimetal to a two-dimensional massive Dirac metal in ZrT e 5 , 2016, 1607.05384.

[14]  National Institute of Standards,et al.  Prediction of Weyl semimetal, AFM topological insulator, nodal line semimetal, and Chern insulator phases in Bi2MnSe4. , 2018, 1811.01863.

[15]  Z. Fisk,et al.  Evidence for Ferromagnetic Clusters in the Colossal-Magnetoresistance Material EuB_{6}. , 2018, Physical review letters.

[16]  C. Chen,et al.  Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[17]  Yuan Wang,et al.  Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[18]  K. Garrity,et al.  Prediction of Weyl semimetal and antiferromagnetic topological insulator phases in Bi2MnSe4 , 2019, npj Computational Materials.

[19]  S. Stemmer,et al.  Anisotropic magnetoresistance in the itinerant antiferromagnetic EuTiO3 , 2019, Physical Review B.

[20]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[21]  Baigeng Wang,et al.  Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes , 2019, Nature Communications.

[22]  Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1 , 2019, Physical Review X.

[23]  Timur K. Kim,et al.  Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4 (0001) , 2019, Physical Review B.

[24]  Sung‐Jin Kim,et al.  Magnetic polaron and unconventional magnetotransport properties of the single-crystalline compound EuBiTe3 , 2019, Physical Review B.

[25]  Yong Xu,et al.  Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. , 2019, Physical chemistry chemical physics : PCCP.

[26]  Qinghua Zhang,et al.  Experimental Realization of an Intrinsic Magnetic Topological Insulator , 2018, Chinese Physics Letters.

[27]  Xi Dai,et al.  Higher-Order Topology of the Axion Insulator EuIn_{2}As_{2}. , 2019, Physical review letters.

[28]  Q. Zhang,et al.  Crystal growth and magnetic structure of MnBi2Te4 , 2019, Physical Review Materials.

[29]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[30]  K. Nielsch,et al.  Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4 , 2018, Chemistry of Materials.

[31]  A. Arnau,et al.  Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi_{2}Te_{4} Films. , 2018, Physical review letters.

[32]  Yong Xu,et al.  Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator , 2019, Nature Materials.

[33]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[34]  Jiaqiang Yan,et al.  Competing Magnetic Interactions in the Antiferromagnetic Topological Insulator MnBi_{2}Te_{4}. , 2019, Physical review letters.

[35]  Yong Xu,et al.  Intrinsic magnetic topological insulator MnBi 2 Te 4 , 2020 .

[36]  Jiaqiang Yan,et al.  Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.