Coloring graphs using topology

Higher dimensional graphs can be used to colour two-dimensional geometric graphs. If G the boundary of a three dimensional graph H for example, we can refine the interior until it is colourable with 4 colours. The later goal is achieved if all interior edge degrees are even. Using a refinement process which cuts the interior along surfaces we can adapt the degrees along the boundary of that surface. More efficient is a self-cobordism of G with itself with a host graph discretizing the product of G with an interval. It follows from the fact that Euler curvature is zero everywhere for three dimensional geometric graphs, that the odd degree edge set O is a cycle and so a boundary if H is simply connected. A reduction to minimal colouring would imply the four colour theorem. The method is expected to give a reason "why 4 colours suffice" and suggests that every two dimensional geometric graph of arbitrary degree and orientation can be coloured by 5 colours: since the projective plane can not be a boundary of a 3-dimensional graph and because for higher genus surfaces, the interior H is not simply connected, we need in general to embed a surface into a 4-dimensional simply connected graph in order to colour it. This explains the appearance of the chromatic number 5 for higher degree or non-orientable situations, a number we believe to be the upper limit. For every surface type, we construct examples with chromatic number 3,4 or 5, where the construction of surfaces with chromatic number 5 is based on a method of Fisk. We have implemented and illustrated all the topological aspects described in this paper on a computer. So far we still need human guidance or simulated annealing to do the refinements in the higher dimensional host graph.

[1]  M. Simonovits,et al.  ON THE CHROMATIC NUMBER OF GEOMETRIC GRAPHS , 1980 .

[2]  O. Knill An index formula for simple graphs , 2012, ArXiv.

[3]  Alexander Postnikov,et al.  Trees, parking functions, syzygies, and deformations of monomial ideals , 2003 .

[4]  C. Hammer,et al.  Geloste und Ungeloste Mathematische Probleme aus Alter und Neuer Zeit. , 1951 .

[5]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[6]  P. Wernicke,et al.  Über den kartographischen Vierfarbensatz , 1904 .

[7]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[8]  Kenneth Appel,et al.  The Four-Color Problem , 1978 .

[9]  Georges Gonthier,et al.  Formal Proof—The Four- Color Theorem , 2008 .

[10]  Oliver Knill,et al.  On the Dimension and Euler characteristic of random graphs , 2011, ArXiv.

[11]  Oliver Knill,et al.  A notion of graph homeomorphism , 2014, ArXiv.

[12]  Paul R. Halmos Has progress in mathematics slowed down , 1990 .

[13]  Alexander S. Mentis,et al.  How false is Kempe’s proof of the Four Color Theorem? Part II , 2009 .

[14]  S. Yau,et al.  Ricci curvature of graphs , 2011 .

[15]  B. Heintz „In der Mathematik ist ein Streit mit Sicherheit zu entscheiden“ Perspektiven einer Soziologie der Mathematik , 2000 .

[16]  Oliver Knill,et al.  Curvature from Graph Colorings , 2014, ArXiv.

[17]  Gary Chartrand,et al.  Chromatic Graph Theory , 2008 .

[18]  H. Bigalke Heinrich Heesch : Kristallgeometrie, Parkettierungen, Vierfarbenforschung , 1988 .

[19]  An integrable evolution equation in geometry , 2013, 1306.0060.

[20]  David Richeson Euler's Gem: The Polyhedron Formula and the Birth of Topology , 2008 .

[21]  J. Carse Why Beliefs Matter: Reflections on the Nature of Science , 2010 .

[22]  Daniel A. White,et al.  A Discrete Differential Forms Framework for Computational Electromagnetism , 2004 .

[23]  Ian Stewart,et al.  Concepts of Modern Mathematics , 1975 .

[24]  Oliver Knill,et al.  A discrete Gauss-Bonnet type theorem , 2010, 1009.2292.

[25]  U. Montaño Ugly Mathematics: Why Do Mathematicians Dislike Computer-Assisted Proofs? , 2012 .

[26]  Oswald Veblen,et al.  An Application of Modular Equations in Analysis Situs , 2022 .

[27]  T. Regge General relativity without coordinates , 1961 .

[28]  K. Appel,et al.  The Solution of the Four-Color-Map Problem , 1977 .

[29]  J. Barnett Resources for Teaching Discrete Mathematics: Early Writings on Graph Theory: Topological Connections , 2009 .

[30]  Oliver Knill A Brouwer fixed-point theorem for graph endomorphisms , 2012, ArXiv.

[31]  Steven G. Krantz The Proof is in the Pudding: The Changing Nature of Mathematical Proof , 2011 .

[32]  Oliver Knill,et al.  The McKean-Singer Formula in Graph Theory , 2013, ArXiv.

[33]  Daniel Král,et al.  Coloring Eulerian Triangulations of the Klein Bottle , 2012, Graphs Comb..

[34]  David Ruelle,et al.  The Mathematician's Brain , 2018 .

[35]  Yuriy Brun The four-color theorem , 2002 .

[36]  Oliver Knill,et al.  The Dirac operator of a graph , 2013, ArXiv.

[37]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[38]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[39]  O. Lanford A shorter proof of the existence of the Feigenbaum fixed point , 1984 .

[40]  Alexander V. Ivashchenko,et al.  Contractible transformations do not change the homology groups of graphs , 1994, Discret. Math..

[41]  P. M. H. Wilson Curved Spaces: From Classical Geometries to Elementary Differential Geometry , 2008 .

[42]  C. Johnson "The proof is in the pudding". , 2004, Northwest dentistry.

[43]  Oliver Knill,et al.  A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.

[44]  Oliver Knill,et al.  Classical mathematical structures within topological graph theory , 2014, ArXiv.

[45]  P. J. Heawood Map-Colour Theorem , 1949 .

[46]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[47]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[48]  Steve Fisk Cobordism and functoriality of colorings , 1980 .

[49]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[50]  Isospectral deformations of the Dirac operator , 2013, 1306.5597.

[51]  The fundamental theorem of algebra before Carl Friedrich Gauss , 1992 .

[52]  D. Barnette,et al.  Map Coloring Polyhedra and the Four Color Problem , 1984 .

[53]  Steve Fisk Variations on coloring, surfaces and higher-dimensional manifolds , 1977 .

[54]  Ivan Izmestiev Extension of colorings , 2005, Eur. J. Comb..

[55]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[56]  W. W. Ball,et al.  Mathematical Recreations and Essays , 1905, Nature.

[57]  Séminaire d'histoire des mathématiques Cahiers du Séminaire d'histoire des mathématiques , 1980 .

[58]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[59]  O. Knill Maximizing the Packing Density on a Class of Almost Periodic Sphere Packings , 1995 .

[60]  Gian-Carlo Rota,et al.  THE PHENOMENOLOGY OF MATHEMATICAL BEAUTY , 1997, Synthese.

[61]  Oliver Knill,et al.  If Archimedes would have known functions , 2014, ArXiv.

[62]  Oliver Knill,et al.  Characteristic Length and Clustering , 2014, ArXiv.

[63]  Walter Stromquist,et al.  Locally planar toroidal graphs are 5-colorable , 1982 .

[64]  A. O. Houcine On hyperbolic groups , 2006 .

[65]  R. Fritsch,et al.  The four-color theorem : history, topological foundations, and idea of proof , 1998 .

[66]  Robin Forman,et al.  Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..

[67]  Steve Fisk The nonexistence of colorings , 1978, J. Comb. Theory, Ser. B.

[68]  Oliver Knill,et al.  On index expectation and curvature for networks , 2012, ArXiv.

[69]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[70]  Donald MacKenzie,et al.  Mechanizing Proof: Computing, Risk, and Trust , 2001 .

[71]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..

[72]  Bojan Mohar Coloring Eulerian triangulations of the projective plane , 2002, Discret. Math..

[73]  Oliver Knill The Euler characteristic of an even-dimensional graph , 2013, ArXiv.

[74]  Toshikazu Sunada,et al.  Fundamental groups and Laplacians , 1988 .

[75]  R. Forman Morse Theory for Cell Complexes , 1998 .

[76]  Oliver Knill,et al.  The theorems of Green-Stokes,Gauss-Bonnet and Poincare-Hopf in Graph Theory , 2012, ArXiv.

[77]  Oliver Knill,et al.  A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.

[78]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[79]  Oliver Knill,et al.  The Lusternik-Schnirelmann theorem for graphs , 2012, ArXiv.

[80]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[81]  John M. Sullivan,et al.  There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems , 2012, Geometriae Dedicata.

[82]  Tanja Hueber The Four Color Problem Assaults And Conquest , 2016 .

[83]  S. Fisk Geometric coloring theory , 1977 .

[84]  A. Soifer The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators , 2008 .

[85]  Michael Joswig,et al.  Branched Coverings, Triangulations, and 3-Manifolds , 2001, math/0108202.

[86]  R. Forman Combinatorial Differential Topology and Geometry , 1999 .

[87]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[88]  Tony Crilly,et al.  CHAPTER 1 – The Emergence of Topological Dimension Theory , 1999 .

[89]  Pieter Maritz,et al.  Francis Guthrie: A Colourful Life , 2012, The Mathematical Intelligencer.

[90]  Y. Ollivier Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.

[91]  I. Lakatos PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.

[92]  H. Whitney A Theorem on Graphs , 1931 .

[93]  Shiping Liu,et al.  Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..

[94]  Carsten Thomassen Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.

[95]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[96]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[97]  Serguei Norine,et al.  Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.

[98]  D. MacKenzie Slaying the Kraken: , 1999 .

[99]  Samir Khuller,et al.  Four colors suffice! , 2005, SIGA.