暂无分享,去创建一个
[1] M. Simonovits,et al. ON THE CHROMATIC NUMBER OF GEOMETRIC GRAPHS , 1980 .
[2] O. Knill. An index formula for simple graphs , 2012, ArXiv.
[3] Alexander Postnikov,et al. Trees, parking functions, syzygies, and deformations of monomial ideals , 2003 .
[4] C. Hammer,et al. Geloste und Ungeloste Mathematische Probleme aus Alter und Neuer Zeit. , 1951 .
[5] D. de Werra,et al. Graph Coloring Problems , 2013 .
[6] P. Wernicke,et al. Über den kartographischen Vierfarbensatz , 1904 .
[7] J. Whitehead. Simplicial Spaces, Nuclei and m‐Groups , 1939 .
[8] Kenneth Appel,et al. The Four-Color Problem , 1978 .
[9] Georges Gonthier,et al. Formal Proof—The Four- Color Theorem , 2008 .
[10] Oliver Knill,et al. On the Dimension and Euler characteristic of random graphs , 2011, ArXiv.
[11] Oliver Knill,et al. A notion of graph homeomorphism , 2014, ArXiv.
[12] Paul R. Halmos. Has progress in mathematics slowed down , 1990 .
[13] Alexander S. Mentis,et al. How false is Kempe’s proof of the Four Color Theorem? Part II , 2009 .
[14] S. Yau,et al. Ricci curvature of graphs , 2011 .
[15] B. Heintz. „In der Mathematik ist ein Streit mit Sicherheit zu entscheiden“ Perspektiven einer Soziologie der Mathematik , 2000 .
[16] Oliver Knill,et al. Curvature from Graph Colorings , 2014, ArXiv.
[17] Gary Chartrand,et al. Chromatic Graph Theory , 2008 .
[18] H. Bigalke. Heinrich Heesch : Kristallgeometrie, Parkettierungen, Vierfarbenforschung , 1988 .
[19] An integrable evolution equation in geometry , 2013, 1306.0060.
[20] David Richeson. Euler's Gem: The Polyhedron Formula and the Birth of Topology , 2008 .
[21] J. Carse. Why Beliefs Matter: Reflections on the Nature of Science , 2010 .
[22] Daniel A. White,et al. A Discrete Differential Forms Framework for Computational Electromagnetism , 2004 .
[23] Ian Stewart,et al. Concepts of Modern Mathematics , 1975 .
[24] Oliver Knill,et al. A discrete Gauss-Bonnet type theorem , 2010, 1009.2292.
[25] U. Montaño. Ugly Mathematics: Why Do Mathematicians Dislike Computer-Assisted Proofs? , 2012 .
[26] Oswald Veblen,et al. An Application of Modular Equations in Analysis Situs , 2022 .
[27] T. Regge. General relativity without coordinates , 1961 .
[28] K. Appel,et al. The Solution of the Four-Color-Map Problem , 1977 .
[29] J. Barnett. Resources for Teaching Discrete Mathematics: Early Writings on Graph Theory: Topological Connections , 2009 .
[30] Oliver Knill. A Brouwer fixed-point theorem for graph endomorphisms , 2012, ArXiv.
[31] Steven G. Krantz. The Proof is in the Pudding: The Changing Nature of Mathematical Proof , 2011 .
[32] Oliver Knill,et al. The McKean-Singer Formula in Graph Theory , 2013, ArXiv.
[33] Daniel Král,et al. Coloring Eulerian Triangulations of the Klein Bottle , 2012, Graphs Comb..
[34] David Ruelle,et al. The Mathematician's Brain , 2018 .
[35] Yuriy Brun. The four-color theorem , 2002 .
[36] Oliver Knill,et al. The Dirac operator of a graph , 2013, ArXiv.
[37] Yiying Tong,et al. Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.
[38] T. Banchoff. Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .
[39] O. Lanford. A shorter proof of the existence of the Feigenbaum fixed point , 1984 .
[40] Alexander V. Ivashchenko,et al. Contractible transformations do not change the homology groups of graphs , 1994, Discret. Math..
[41] P. M. H. Wilson. Curved Spaces: From Classical Geometries to Elementary Differential Geometry , 2008 .
[42] C. Johnson. "The proof is in the pudding". , 2004, Northwest dentistry.
[43] Oliver Knill,et al. A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.
[44] Oliver Knill,et al. Classical mathematical structures within topological graph theory , 2014, ArXiv.
[45] P. J. Heawood. Map-Colour Theorem , 1949 .
[46] T. Banchoff. CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .
[47] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[48] Steve Fisk. Cobordism and functoriality of colorings , 1980 .
[49] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[50] Isospectral deformations of the Dirac operator , 2013, 1306.5597.
[51] The fundamental theorem of algebra before Carl Friedrich Gauss , 1992 .
[52] D. Barnette,et al. Map Coloring Polyhedra and the Four Color Problem , 1984 .
[53] Steve Fisk. Variations on coloring, surfaces and higher-dimensional manifolds , 1977 .
[54] Ivan Izmestiev. Extension of colorings , 2005, Eur. J. Comb..
[55] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[56] W. W. Ball,et al. Mathematical Recreations and Essays , 1905, Nature.
[57] Séminaire d'histoire des mathématiques. Cahiers du Séminaire d'histoire des mathématiques , 1980 .
[58] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[59] O. Knill. Maximizing the Packing Density on a Class of Almost Periodic Sphere Packings , 1995 .
[60] Gian-Carlo Rota,et al. THE PHENOMENOLOGY OF MATHEMATICAL BEAUTY , 1997, Synthese.
[61] Oliver Knill,et al. If Archimedes would have known functions , 2014, ArXiv.
[62] Oliver Knill,et al. Characteristic Length and Clustering , 2014, ArXiv.
[63] Walter Stromquist,et al. Locally planar toroidal graphs are 5-colorable , 1982 .
[64] A. O. Houcine. On hyperbolic groups , 2006 .
[65] R. Fritsch,et al. The four-color theorem : history, topological foundations, and idea of proof , 1998 .
[66] Robin Forman,et al. Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..
[67] Steve Fisk. The nonexistence of colorings , 1978, J. Comb. Theory, Ser. B.
[68] Oliver Knill,et al. On index expectation and curvature for networks , 2012, ArXiv.
[69] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[70] Donald MacKenzie,et al. Mechanizing Proof: Computing, Risk, and Trust , 2001 .
[71] Shing-Tung Yau,et al. Graph homotopy and Graham homotopy , 2001, Discret. Math..
[72] Bojan Mohar. Coloring Eulerian triangulations of the projective plane , 2002, Discret. Math..
[73] Oliver Knill. The Euler characteristic of an even-dimensional graph , 2013, ArXiv.
[74] Toshikazu Sunada,et al. Fundamental groups and Laplacians , 1988 .
[75] R. Forman. Morse Theory for Cell Complexes , 1998 .
[76] Oliver Knill,et al. The theorems of Green-Stokes,Gauss-Bonnet and Poincare-Hopf in Graph Theory , 2012, ArXiv.
[77] Oliver Knill,et al. A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.
[78] J. van Leeuwen,et al. Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.
[79] Oliver Knill,et al. The Lusternik-Schnirelmann theorem for graphs , 2012, ArXiv.
[80] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[81] John M. Sullivan,et al. There is no triangulation of the torus with vertex degrees 5, 6, ... , 6, 7 and related results: geometric proofs for combinatorial theorems , 2012, Geometriae Dedicata.
[82] Tanja Hueber. The Four Color Problem Assaults And Conquest , 2016 .
[83] S. Fisk. Geometric coloring theory , 1977 .
[84] A. Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators , 2008 .
[85] Michael Joswig,et al. Branched Coverings, Triangulations, and 3-Manifolds , 2001, math/0108202.
[86] R. Forman. Combinatorial Differential Topology and Geometry , 1999 .
[87] E. Grinspun. Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.
[88] Tony Crilly,et al. CHAPTER 1 – The Emergence of Topological Dimension Theory , 1999 .
[89] Pieter Maritz,et al. Francis Guthrie: A Colourful Life , 2012, The Mathematical Intelligencer.
[90] Y. Ollivier. Ricci curvature of Markov chains on metric spaces , 2007, math/0701886.
[91] I. Lakatos. PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.
[92] H. Whitney. A Theorem on Graphs , 1931 .
[93] Shiping Liu,et al. Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..
[94] Carsten Thomassen. Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.
[95] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[96] Robin Thomas,et al. The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.
[97] Serguei Norine,et al. Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.
[98] D. MacKenzie. Slaying the Kraken: , 1999 .
[99] Samir Khuller,et al. Four colors suffice! , 2005, SIGA.