The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants

[1]  X. Py,et al.  Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants , 2019, Renewable and Sustainable Energy Reviews.

[2]  Yan Wang,et al.  The role of sensible heat in a concentrated solar power plant with thermochemical energy storage , 2019, Energy Conversion and Management.

[3]  W. Lipiński,et al.  Friedman method kinetic analysis of CaO-based sorbent for high-temperature thermochemical energy storage , 2019, Chemical Engineering Science.

[4]  Joe Coventry,et al.  Sensible energy storage options for concentrating solar power plants operating above 600 °C , 2019, Renewable and Sustainable Energy Reviews.

[5]  Edward S. Rubin,et al.  A sequential approach for the economic evaluation of new CO2 capture technologies for power plants , 2019, International Journal of Greenhouse Gas Control.

[6]  C. Sattler,et al.  Solar treatment of cohesive particles in a directly irradiated rotary kiln , 2019, Solar Energy.

[7]  M. Astolfi,et al.  Improved Flexibility and Economics of Calcium Looping Power Plants by Thermochemical Energy Storage , 2018, International Journal of Greenhouse Gas Control.

[8]  J. Valverde,et al.  Effect of temperature on flow properties of magnetofluidized beds at low consolidations , 2019, Chemical Engineering Journal.

[9]  M. Romero,et al.  Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. , 2019, Chemical reviews.

[10]  A. Muto,et al.  Demonstration of High-Temperature Calcium-Based Thermochemical Energy Storage System for use with Concentrating Solar Power Facilities , 2019 .

[11]  G. Cinti,et al.  Techno-economic analysis of calcium looping processes for low CO2 emission cement plants , 2019, International Journal of Greenhouse Gas Control.

[12]  V. Manović,et al.  Techno-economic feasibility assessment of calcium looping combustion using commercial technology appraisal tools , 2019, Journal of Cleaner Production.

[13]  J. Valverde,et al.  High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants , 2019, Applied Energy.

[14]  V. Manović,et al.  Pilot-scale calcination of limestone in steam-rich gas for direct air capture , 2019, Energy Conversion and Management: X.

[15]  L. Luo,et al.  Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses , 2019, Energy.

[16]  Hossein Beidaghy Dizaji,et al.  A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications , 2018, Renewable and Sustainable Energy Reviews.

[17]  B. Sarrión,et al.  Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage , 2018, Journal of CO2 Utilization.

[18]  M. Romano,et al.  One-dimensional model of entrained-flow carbonator for CO2 capture in cement kilns by Calcium looping process , 2018, Chemical Engineering Science.

[19]  Hadrien Benoit,et al.  Solar processing of reactive particles up to 900°C, the SOLPART project , 2018 .

[20]  Nathalie Mazet,et al.  Economical optimization of thermochemical storage in concentrated solar power plants via pre-scenarios , 2018, Energy Conversion and Management.

[21]  B. Arias,et al.  Carbonation of Fine CaO Particles in a Drop Tube Reactor , 2018, Industrial & Engineering Chemistry Research.

[22]  Omar Behar,et al.  Solar thermal power plants – A review of configurations and performance comparison , 2018, Renewable and Sustainable Energy Reviews.

[23]  S. Voutetakis,et al.  Design of an Integrated CSP-Calcium Looping for Uninterrupted Power Production Through Energy Storage , 2018 .

[24]  Rahman Saidur,et al.  A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends , 2018, Renewable and Sustainable Energy Reviews.

[25]  B. Arias,et al.  Measuring attrition properties of calcium looping materials in a 30 kW pilot plant , 2018, Powder Technology.

[26]  R. Chacartegui,et al.  Process integration of Calcium-Looping thermochemical energy storage system in concentrating solar power plants , 2018, Energy.

[27]  Jianmin Luo,et al.  Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst , 2018, Applied Catalysis B: Environmental.

[28]  F. Raganati,et al.  Gas–solid fluidization of cohesive powders , 2018 .

[29]  R. Chacartegui,et al.  Carbonation of Limestone Derived CaO for Thermochemical Energy Storage: From Kinetics to Process Integration in Concentrating Solar Plants , 2018 .

[30]  B. Sarrión,et al.  Pressure Effect on the Multicycle Activity of Natural Carbonates and a Ca/Zr Composite for Energy Storage of Concentrated Solar Power , 2018 .

[31]  W. Lipiński,et al.  Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications , 2018 .

[32]  S. Abanades,et al.  Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination , 2018 .

[33]  Fuqiong Lei,et al.  Investigation into SrO/SrCO3 for high temperature thermochemical energy storage , 2018 .

[34]  Jose Manuel Valverde,et al.  Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power , 2018 .

[35]  Shakirudeen A. Salaudeen,et al.  CaO-based CO 2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling , 2018 .

[36]  Martin Helbig,et al.  Long-term pilot testing of the carbonate looping process in 1 MWth scale , 2017 .

[37]  Dawid P. Hanak,et al.  Economic feasibility of calcium looping under uncertainty , 2017 .

[38]  Christian Sattler,et al.  Solar hydrogen production via sulphur based thermochemical water-splitting , 2017 .

[39]  Lingai Luo,et al.  Thermal energy storage systems for concentrated solar power plants , 2017 .

[40]  A. Lavine,et al.  Modeling of ammonia synthesis to produce supercritical steam for solar thermochemical energy storage , 2017 .

[41]  W. Lipiński,et al.  A Solar Reactor Design for Research on Calcium Oxide-Based Carbon Dioxide Capture , 2017 .

[42]  Daniel Chemisana,et al.  Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues , 2017 .

[43]  M. Linder,et al.  Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design , 2017 .

[44]  R. Chacartegui,et al.  Power cycles integration in concentrated solar power plants with energy storage based on calcium looping , 2017 .

[45]  Borja Arias,et al.  Calcium looping CO2 capture system for back-up power plants , 2017 .

[46]  J. Valverde,et al.  Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants , 2017 .

[47]  Jose Manuel Valverde,et al.  Large-scale high-temperature solar energy storage using natural minerals , 2017 .

[48]  C. Ho Advances in central receivers for concentrating solar applications , 2017 .

[49]  Juan Carlos Abanades,et al.  Integration of Ca-Looping Systems for CO2 Capture in Cement Plants , 2017 .

[50]  Mark Sceats,et al.  LEILAC: Low Cost CO2 Capture for the Cement and Lime Industries , 2017 .

[51]  Nikolaos I. Tsongidis,et al.  Material development and assessment of an energy storage concept based on the CaO-looping process , 2017 .

[52]  S. Abdel-Khalik,et al.  Highlights of the high-temperature falling particle receiver project: 2012 - 2016 , 2017 .

[53]  Ricardo Chacartegui,et al.  Optimizing the CSP-Calcium Looping integration for Thermochemical Energy Storage , 2017 .

[54]  J. Valverde,et al.  Limestone calcination under calcium-looping conditions for CO2 capture and thermochemical energy storage in the presence of H2O: an in situ XRD analysis. , 2017, Physical chemistry chemical physics : PCCP.

[55]  J. Valverde,et al.  Effect of Thermal Pretreatment and Nanosilica Addition on Limestone Performance at Calcium-Looping Conditions for Thermochemical Energy Storage of Concentrated Solar Power , 2017 .

[56]  B. Arias,et al.  CO2 Capture by Calcium Looping at Relevant Conditions for Cement Plants: Experimental Testing in a 30 kWth Pilot Plant , 2017 .

[57]  C. Sattler,et al.  Solar thermochemical heat storage via the Co3O4/CoO looping cycle: Storage reactor modelling and experimental validation , 2017 .

[58]  J. Valverde,et al.  Large-Scale Storage of Concentrated Solar Power from Industrial Waste , 2017 .

[59]  M. Gallas,et al.  Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept , 2017 .

[60]  Clifford K. Ho,et al.  A review of high-temperature particle receivers for concentrating solar power , 2016 .

[61]  J. Valverde,et al.  Reduction of Calcination Temperature in the Calcium Looping Process for CO2 Capture by Using Helium: In Situ XRD Analysis , 2016 .

[62]  G. Flamant,et al.  Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage , 2016 .

[63]  Mehdi Aghaei Meybodi,et al.  Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study , 2016 .

[64]  Ricardo Chacartegui,et al.  Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle , 2016 .

[65]  L. Cabeza,et al.  Review of technology: Thermochemical energy storage for concentrated solar power plants , 2016 .

[66]  Larry Stoddard,et al.  Falling Particles: Concept Definition and Capital Cost Estimate , 2016 .

[67]  Edward Fuentealba,et al.  2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants , 2016 .

[68]  Chechet Biliyok,et al.  Calcium looping with inherent energy storage for decarbonisation of coal-fired power plant , 2016 .

[69]  Martin Schmücker,et al.  Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems , 2016 .

[70]  P. Salatino,et al.  Improving the thermal performance of fluidized beds for concentrated solar power and thermal energy storage , 2016 .

[71]  Luis M. Romeo,et al.  The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior , 2016 .

[72]  Rhys Jacob,et al.  Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies , 2016 .

[73]  Yolanda A. Criado,et al.  Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants , 2015 .

[74]  R. Chacartegui,et al.  A new model of the carbonator reactor in the calcium looping technology for post-combustion CO2 capture , 2015 .

[75]  X. Qu,et al.  The development of metal hydrides using as concentrating solar thermal storage materials , 2015, Frontiers of Materials Science.

[76]  R. Mei,et al.  Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3. , 2015, ChemSusChem.

[77]  Javier Rodríguez-Aseguinolaza,et al.  Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material , 2015 .

[78]  J. Valverde,et al.  Crystallographic transformation of limestone during calcination under CO2. , 2015, Physical chemistry chemical physics : PCCP.

[79]  Dawid P. Hanak,et al.  A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems , 2015 .

[80]  R. Mei Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate , 2015 .

[81]  Francesco Casella,et al.  Design of CSP plants with optimally operated thermal storage , 2015 .

[82]  Xinhai Xu,et al.  Heat transfer fluids for concentrating solar power systems – A review , 2015 .

[83]  Jose Manuel Valverde,et al.  Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone , 2015 .

[84]  Jose Manuel Valverde,et al.  Role of precalcination and regeneration conditions on postcombustion CO2 capture in the Ca-looping technology , 2014 .

[85]  Calin-Cristian Cormos,et al.  Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle , 2014 .

[86]  K. Nithyanandam,et al.  Design of a latent thermal energy storage system with embedded heat pipes , 2014 .

[87]  Teuku Meurah Indra Mahlia,et al.  A review of available methods and development on energy storage; technology update , 2014 .

[88]  F. Pérez,et al.  Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants , 2014 .

[89]  A. Deydier,et al.  A review on high temperature thermochemical heat energy storage , 2014 .

[90]  W. Lipiński,et al.  Towards Solar Thermochemical Carbon Dioxide Capture via Calcium Oxide Looping: A Review , 2014 .

[91]  Fabio Montagnaro,et al.  Spent limestone sorbent from calcium looping cycle as a raw material for the cement industry , 2014 .

[92]  Stefano Consonni,et al.  The Calcium Looping Process for Low CO2 Emission Cement Plants , 2014 .

[93]  Said I. Abdel-Khalik,et al.  Technology Advancements for Next Generation Falling Particle Receivers , 2014 .

[94]  Edward S. Rubin,et al.  Calcium Looping Cycle for CO2 Capture: Performance, Cost And Feasibility Analysis☆ , 2014 .

[95]  Xiaoxi Yang,et al.  Design of new molten salt thermal energy storage material for solar thermal power plant , 2013 .

[96]  Hadrien Benoit,et al.  Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept , 2013 .

[97]  Ralf Uhlig,et al.  Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants Original Research Article , 2013 .

[98]  L. Fan,et al.  Ca(OH)2‐Based Calcium Looping Process Development at The Ohio State University , 2013 .

[99]  Edward S. Rubin,et al.  A proposed methodology for CO2 capture and storage cost estimates , 2013 .

[100]  Elias K. Stefanakos,et al.  Thermal energy storage technologies and systems for concentrating solar power plants , 2013 .

[101]  Jose Manuel Valverde,et al.  A model on the CaO multicyclic conversion in the Ca-looping process , 2013 .

[102]  S. Peil,et al.  Thermochemical Heat Storage for High Temperature Applications – A Review , 2013 .

[103]  M. Jonemann Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013 , 2013 .

[104]  Amornchai Arpornwichanop,et al.  A systematic model-based analysis of a downer regenerator in fluid catalytic cracking processes , 2013, Comput. Chem. Eng..

[105]  Scott Champagne,et al.  Influence of Steam Injection during Calcination on the Reactivity of CaO-Based Sorbent for Carbon Capture , 2013 .

[106]  B. Scalet Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide (CLM BREF) , 2013 .

[107]  Josep Manuel,et al.  Fluidization of Fine Powders , 2013 .

[108]  F. Winter,et al.  Applications of fluidized bed technology in processes other than combustion and gasification , 2013 .

[109]  P. Salatino,et al.  Development of a Novel Concept of Solar Receiver/Thermal Energy Storage System Based on Compartmented Dense Gas Fluidized Beds , 2013 .

[110]  Ming Zhao,et al.  A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2 , 2013 .

[111]  Stefano Consonni,et al.  The Calcium Looping Process for Low CO2 Emission Cement and Power , 2013 .

[112]  Luis M. Romeo,et al.  Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture , 2013 .

[113]  Schorcht Frauke,et al.  Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide: IndustrialEmissions Directive 2010/75/EU:(Integrated Pollution Prevention and Control) , 2013 .

[114]  K. Suslick,et al.  Mechanical activation of CaO-based adsorbents for CO(2) capture. , 2013, ChemSusChem.

[115]  Sheldon Jeter,et al.  Experimental Study of a Sand–Air Heat Exchanger for Use With a High-Temperature Solar Gas Turbine System , 2012 .

[116]  Susan E.B. Edwards,et al.  Calcium looping in solar power generation plants , 2012 .

[117]  Luisa F. Cabeza,et al.  Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions , 2012 .

[118]  Jaakko Ylätalo,et al.  1-Dimensional modelling and simulation of the calcium looping process , 2012 .

[119]  Ningsheng Cai,et al.  Effect of Temperature on the Carbonation Reaction of CaO with CO2 , 2012 .

[120]  Luis M. Romeo,et al.  Energy penalty reduction in the calcium looping cycle , 2012 .

[121]  M. Romano Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas , 2012 .

[122]  Liang-Shih Fan,et al.  Simulations and process analysis of the carbonation–calcination reaction process with intermediate hydration , 2012 .

[123]  L. Fan,et al.  Kinetic Study of High-Pressure Carbonation Reaction of Calcium-Based Sorbents in the Calcium Looping Process (CLP) , 2011 .

[124]  Ali H. Abedin,et al.  A Critical Review of Thermochemical Energy Storage Systems , 2011 .

[125]  Luisa F. Cabeza,et al.  Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe , 2011 .

[126]  Jochen Ströhle,et al.  Carbonate looping process simulation using a 1D fluidized bed model for the carbonator , 2011 .

[127]  P. Fennell,et al.  Investigation into potential synergy between power generation, cement manufacture and CO2 abatement using the calcium looping cycle , 2011 .

[128]  Paul S. Fennell,et al.  The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production , 2011 .

[129]  N. Panwar,et al.  Role of renewable energy sources in environmental protection: A review , 2011 .

[130]  Nathan P. Siegel,et al.  Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation , 2010 .

[131]  Paul S. Fennell,et al.  The calcium looping cycle for large-scale CO2 capture , 2010 .

[132]  Liang-Shih Fan,et al.  Subpilot Demonstration of the Carbonation−Calcination Reaction (CCR) Process: High-Temperature CO2 and Sulfur Capture from Coal-Fired Power Plants , 2010 .

[133]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[134]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[135]  Lingai Luo,et al.  A review on long-term sorption solar energy storage , 2009 .

[136]  Vasilije Manovic,et al.  Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles , 2009 .

[137]  Luis M. Romeo,et al.  Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants , 2009 .

[138]  L. Romeo,et al.  Optimizing make-up flow in a CO2 capture system using CaO , 2009 .

[139]  B. Bogdanovic,et al.  High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications , 2009, International journal of molecular sciences.

[140]  Vasilije Manovic,et al.  Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. , 2008, Environmental science & technology.

[141]  J. C. Abanades,et al.  Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO , 2008 .

[142]  D. Fidaros,et al.  A parametric study of a solar calcinator using computational fluid dynamics , 2007 .

[143]  J. Zhang,et al.  Simulation of Gas Flow Pattern and Separation Efficiency in Cyclone with Conventional Single and Spiral Double Inlet Configuration , 2006 .

[144]  J. Carlos Abanades,et al.  CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles , 2006 .

[145]  W. Lipiński,et al.  Solar chemical reactor technology for industrial production of lime , 2006 .

[146]  Wojciech Lipiński,et al.  Multitube Rotary Kiln for the Industrial Solar Production of Lime , 2005 .

[147]  J. Carlos Abanades,et al.  Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2 , 2005 .

[148]  Hongguang Jin,et al.  Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy , 2005 .

[149]  D. Beruto,et al.  Microstructure, kinetic, structure, thermodynamic analysis for calcite decomposition: free-surface and powder bed experiments , 2004 .

[150]  Ulf Herrmann,et al.  Engineering aspects of a molten salt heat transfer fluid in a trough solar field , 2004 .

[151]  Wojciech Lipiński,et al.  Design and experimental investigation of a horizontal rotary reactor for the solar thermal production of lime , 2004 .

[152]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[153]  J. C. Abanades,et al.  Conversion Limits in the Reaction of CO2 with Lime , 2003 .

[154]  J. C. Abanades The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 , 2002 .

[155]  Antonio Ramos,et al.  Flow Regimes in Fine Cohesive Powders , 1999 .

[156]  J. W. Carson,et al.  Six steps to designing a storage vessel that really works , 1999 .

[157]  T. Shimizu,et al.  A twin fluid-bed reactor for removal of CO2 from combustion processes , 1999 .

[158]  Hitoki Matsuda,et al.  Study of Carbonation of CaO for High Temperature Thermal Energy Storage , 1998 .

[159]  Alex C. Hoffmann,et al.  Post Cyclone (PoC): An innovative way to reduce the emission of fines from industrial cyclones , 1997 .

[160]  Hitoki Matsuda,et al.  Applicability of Carbonation/Decarbonation Reactions to High-Temperature Thermal Energy Storage and Temperature Upgrading , 1996 .

[161]  Robert H. Borgwardt,et al.  Calcium oxide sintering in atmospheres containing water and carbon dioxide , 1989 .

[162]  Robert H. Borgwardt,et al.  Sintering of nascent calcium oxide , 1989 .

[163]  I. Barin Thermochemical data of pure substances , 1989 .

[164]  Gilles Flamant,et al.  Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3 , 1980 .

[165]  G. Flamant,et al.  52 Decarbonation of calcite and phosphate rock in solar chemical reactors. , 1980 .

[166]  Guy Ervin,et al.  Solar heat storage using chemical reactions , 1977 .

[167]  Wayne E. Wentworth,et al.  Simple thermal decomposition reactions for storage of solar thermal energy , 1975 .

[168]  R. Barker,et al.  The reactivity of calcium oxide towards carbon dioxide and its use for energy storage , 1974 .

[169]  E. Berger Effect of Steam on the Decomposition of Limestone1,1 , 1927 .