Reduced order distributed boundary control of thermal transients in microsystems

We study the problem of regulation of thermal transients in a microsystem using empirical eigenfunctions. Proper orthogonal decomposition (POD) is applied to an ensemble of data to obtain the dominant structures, called empirical eigenfunctions, that characterize the dynamics of the process. These eigenfunctions are the most efficient basis for capturing the dynamics of an infinite dimensional process with a finite number of modes. In contrast to published approaches, we propose a new receding horizon boundary control scheme using the empirical eigenfunctions in a constrained optimization procedure to track a desired spatiotemporal profile. Finite element method (FEM) simulations of heat transfer are provided and used in order to implement and test the performance of the controller.

[1]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[2]  P. Christofides,et al.  Nonlinear Control of Incompressible Fluid Flow: Application to Burgers' Equation and 2D Channel Flow☆ , 2000 .

[3]  B. Finlayson The method of weighted residuals and variational principles : with application in fluid mechanics, heat and mass transfer , 1972 .

[4]  Michael P. Harold,et al.  Reaction Engineering for Microreactor Systems , 1998 .

[5]  J. Lumley Stochastic tools in turbulence , 1970 .

[6]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[7]  P. Christofides,et al.  Finite-dimensional approximation and control of non-linear parabolic PDE systems , 2000 .

[8]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[9]  P. Daoutidis,et al.  Robust control of hyperbolic PDE systems , 1998 .

[10]  Mayuresh V. Kothare,et al.  Model based control of temperature distribution in integrated microchemical systems , 2003 .

[11]  Sivaguru S. Ravindran,et al.  Proper Orthogonal Decomposition in Optimal Control of Fluids , 1999 .

[12]  Panagiotis D. Christofides,et al.  Control of nonlinear distributed process systems : Recent developments and challenges , 2001 .

[13]  Yoram Halevi,et al.  Control of flexible structures governed by the wave equation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[14]  M. Kothare,et al.  Entropy of spatiotemporal data as a dynamic truncation indicator for model reduction applications , 2005, Proceedings of the 2005, American Control Conference, 2005..

[15]  Klavs F. Jensen,et al.  Microchemical systems: Status, challenges, and opportunities , 1999 .

[16]  K. Jensen,et al.  Design and fabrication of microfluidic devices for multiphase mixing and reaction , 2002 .

[17]  W. Harmon Ray,et al.  Some recent applications of distributed parameter systems theory - A survey , 1978, Autom..

[18]  M. Kothare,et al.  A microreactor for hydrogen production in micro fuel cell applications , 2004, Journal of Microelectromechanical Systems.

[19]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[20]  A. C. Robinson A survey of optimal control of distributed-parameter systems , 1971 .

[21]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[22]  R. E. Goodson,et al.  Optimal control of systems with distributed parameters , 1965 .

[23]  J. T. Tou,et al.  OPTIMAL CONTROL OF DISTRIBUTED-PARAMETER SYSTEMS. , 1966 .

[24]  Leonidas G. Bleris,et al.  Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions , 2005, Comput. Chem. Eng..

[25]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[26]  Ioannis G. Kevrekidis,et al.  Alternative approaches to the Karhunen-Loève decomposition for model reduction and data analysis , 1996 .

[27]  Miroslav Krstic,et al.  Fluid mixing by feedback in Poiseuille flow , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[28]  Leonidas G. Bleris,et al.  Embedded Model Predictive Control for System-on-a-Chip Applications , 2004 .

[29]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[30]  J. Ottino Mixing, chaotic advection, and turbulence , 1990 .

[31]  Sahjendra N. Singh,et al.  Nonlinear Adaptive Close Formation Control of Unmanned Aerial Vehicles , 2000 .

[32]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[33]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[34]  Kok Lay Teo,et al.  Optimal control of distributed parameter systems , 1981 .

[35]  T. R. Hsu,et al.  MEMS and Microsystems: Design and Manufacture , 2001 .

[36]  Panagiotis D. Christofides,et al.  Nonlinear and Robust Control of Pde Systems , 2001 .

[37]  R. E. Goodson,et al.  Optimal Feedback Solutions for a Class of Distributed Systems , 1966 .

[38]  J. Santiago,et al.  Electrokinetic instability micromixing. , 2001, Analytical chemistry.

[39]  A. G. Butkovskii Optimal control of systems with distributed parameters , 1963 .

[40]  Leonidas G. Bleris,et al.  Towards embedded model predictive control for System-on-a-Chip applications , 2006 .

[41]  M M Athavale,et al.  Coupled Multiphysics and Chemistry Simulations of PCR Microreactors with Active Control , 2001 .

[42]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[43]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[44]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[45]  Radhakant Padhi,et al.  PROPER ORTHOGONAL DECOMPOSITION BASED OPTIMAL CONTROL DESIGN OF HEAT EQUATION WITH DISCRETE ACTUATORS USING NEURAL NETWORKS , 2002 .

[46]  Sergey Edward Lyshevski,et al.  Mems and Nems , 2018 .

[47]  Panagiotis D. Christofides,et al.  Optimization of transport-reaction processes using nonlinear model reduction , 2000 .

[48]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[49]  Michel Loève,et al.  Probability Theory I , 1977 .

[50]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[51]  Nadim Maluf,et al.  An Introduction to Microelectromechanical Systems Engineering , 2000 .

[52]  H. Park,et al.  The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems , 1996 .