Modeling and simulation of different and representative engineering problems using Network Simulation Method

Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.

[1]  Z. Ding,et al.  A domain transformation technique in oxygen diffusion problems with moving oxidation fronts on unbounded domains , 1998 .

[2]  M. Cánovas,et al.  Numerical Simulation of Density-Driven Flow and Heat Transport Processes in Porous Media Using the Network Method , 2017 .

[3]  H. Hölscher,et al.  Atomic-Scale Friction Studies Using Scanning Force Microscopy , 2000 .

[4]  Francisco Alhama,et al.  Heat conduction through a multilayered wall with variable boundary conditions , 1997 .

[5]  Francisco Alhama,et al.  A powerful and versatile educational software to simulate transient heat transfer processes in simple fins , 2008, Comput. Appl. Eng. Educ..

[6]  Francisco Alhama,et al.  Modelling of stick-slip behaviour with different hypotheses on friction forces , 2012 .

[7]  A. A. Moya Influence of dc electric current on the electrochemical impedance of ion-exchange membrane systems , 2011 .

[8]  Francisco Alhama,et al.  FATSIM-A: An educational tool based on electrical analogy and the code PSPICE to simulate fluid flow and solute transport processes , 2011 .

[9]  Per Kofstad,et al.  High Temperature Oxidation of Metals , 1966 .

[10]  Joaquín Zueco,et al.  Inverse problem of estimating time-dependent heat transfer coefficient with the network simulation method , 2004 .

[11]  Hendrik Hölscher,et al.  CONSEQUENCES OF THE STICK-SLIP MOVEMENT FOR THE SCANNING FORCE MICROSCOPY IMAGING OF GRAPHITE , 1998 .

[12]  Francisco Alhama,et al.  New additional conditions for the numerical uniqueness of the Boussinesq and Timpe solutions of elasticity problems , 2012, Int. J. Comput. Math..

[13]  Kobayashi,et al.  Atomic-scale friction image of graphite in atomic-force microscopy. , 1996, Physical review. B, Condensed matter.

[14]  David A. Miller,et al.  Modeling of oxidation in metal matrix composites , 1995 .

[15]  H. Nakajima,et al.  Diffusion in α-Ti and Zr , 2003 .

[16]  Joaquín Zueco,et al.  Simultaneous inverse determination of temperature-dependent thermophysical properties in fluids using the network simulation method , 2007 .

[17]  José Horno,et al.  Digital simulation of electrochemical processes by the network approach , 1993 .

[18]  J. A. Moreno,et al.  Numerical Solutions of 2-D Linear Elastostatic Problems by Network Method , 2011 .

[19]  Francisco Alhama,et al.  An efficient model for solving density driven groundwater flow problems based on the network simulation method , 2007 .

[20]  O. Bég,et al.  Transient nonlinear optically-thick radiative–convective double-diffusive boundary layers in a Darcian porous medium adjacent to an impulsively started surface: Network simulation solutions , 2009 .

[21]  Singiresu S. Rao Chapter 22 – Finite Element Analysis Using ANSYS† , 2011 .

[22]  Hendrik Hölscher,et al.  Simulation of a scanned tip on a NaF(001) surface in friction force microscopy , 1996 .

[23]  A. Soto Meca,et al.  Simulation of flow and solute coupled 2‐D problems with velocity‐dependent dispersion coefficient based on the network method , 2012 .

[24]  J. Jordán Solución de problemas inversos en conducción de calor mediante el método de simulación por redes , 2009 .

[25]  Francisco Alhama,et al.  Solution of temperature fields in hydrodynamics bearings by the numerical network method , 2007 .

[26]  Joaquín Zueco,et al.  Inverse determination of heat generation sources in two-dimensional homogeneous solids: Application to orthotropic medium , 2006 .

[27]  H. Hölscher,et al.  Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy , 2000 .

[28]  Antolino Gallego,et al.  Evaluation of low-cycle fatigue damage in RC exterior beam-column subassemblages by acoustic emission , 2010 .

[29]  C. F. González-Fernández,et al.  The effect of previous convective flux on the nonstationary diffusion through membranes. Network simulation , 1990 .

[30]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[31]  Cornelis Vuik,et al.  Some historical notes about the Stefan problem , 1993 .

[32]  Ingeniería Técnica De Telecomunicación UNIVERSIDAD POLITÉCNICA DE CARTAGENA , 2006 .

[33]  Francisco Alhama,et al.  SIMULATION OF FLUID FLOW AND HEAT TRANSPORT COUPLED PROCESSES USING FAHET SOFTWARE , 2015 .

[34]  Francisco Alhama,et al.  APPLICATION OF THE NETWORK METHOD TO HEAT CONDUCTION PROCESSES WITH POLYNOMIAL AND POTENTIAL-EXPONENTIALLY VARYING THERMAL PROPERTIES , 1998 .