A convex relaxation method for computing exact global solutions for multiplicative noise removal

We propose a convex relaxation technique for computing global solutions for the nonconvex multiplicative noise model. The method is based on functional lifting by introducing an additional dimension. We employ a primal-dual-based gradient-type algorithm in numerical implementations to overcome the nondifferentiability of the total variation term. Numerical results show that our algorithm is highly efficient. Furthermore, global solutions of the original model can be obtained with no dependence on the initial guess.

[1]  J. Koko,et al.  An Augmented Lagrangian Method for , 2010 .

[2]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[3]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[5]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[6]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[7]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[8]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[9]  T. Chan,et al.  Convex Formulation and Exact Global Solutions for Multi-phase Piecewise Constant Mumford-Shah Image Segmentation , 2009 .

[10]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[11]  W. Fleming,et al.  An integral formula for total gradient variation , 1960 .

[12]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..

[13]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.

[15]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[16]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[17]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[18]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[19]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[20]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[21]  Daniel Cremers,et al.  A Convex Formulation of Continuous Multi-label Problems , 2008, ECCV.

[22]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[23]  S. Osher,et al.  Global minimization of Markov random fields with applications to optical flow , 2012 .

[24]  Florence Tupin,et al.  Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights , 2009, IEEE Transactions on Image Processing.

[25]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[26]  José M. Bioucas-Dias,et al.  Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[27]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[28]  Michael K. Ng,et al.  Multiplicative Noise Removal with Spatially Varying Regularization Parameters , 2010, SIAM J. Imaging Sci..

[29]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .