Stochastic time domain spectral element analysis of beam structures

[1]  D. Maiti,et al.  Influence of parametric uncertainties on the deflection statistics of general laminated composite and sandwich plates , 2017 .

[2]  S. Gopalakrishnan,et al.  Wave transmission characteristics for higher-order sandwich panel with flexible core using time-domain spectral element method , 2017 .

[3]  El Mostafa Daya,et al.  Variability of dynamic responses of frequency dependent visco-elastic sandwich beams with material and physical properties modeled by spatial random fields , 2016 .

[4]  Michael A. Sprague,et al.  Legendre spectral finite elements for Reissner-Mindlin composite plates , 2015 .

[5]  Zhangxian Yuan,et al.  Finite Element Formulation Based on the Extended High-Order Sandwich Panel Theory , 2015 .

[6]  C. Pozrikidis,et al.  Introduction to finite and spectral element methods using MATLAB , 2014 .

[7]  Sayan Gupta,et al.  Analysis of CFRP laminated plates with spatially varying non-Gaussian inhomogeneities using SFEM , 2014 .

[8]  Sayan Gupta,et al.  Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities , 2014 .

[9]  Catherine N. Phan,et al.  Blast Response of a Sandwich Beam/Wide Plate Based on the Extended High-Order Sandwich Panel Theory and Comparison With Elasticity , 2013 .

[10]  George A. Kardomateas,et al.  Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments , 2012 .

[11]  Yeoshua Frostig,et al.  Analysis of Sandwich Beams With a Compliant Core and With In-Plane Rigidity—Extended High-Order Sandwich Panel Theory Versus Elasticity , 2012 .

[12]  Guang Meng,et al.  Wave Propagation Analysis in Composite Laminates Containing a Delamination Using a Three-Dimensional Spectral Element Method , 2012 .

[13]  W. Ostachowicz,et al.  Guided Waves in Structures for SHM: The Time - domain Spectral Element Method , 2012 .

[14]  C. M. Mota Soares,et al.  A layerwise mixed least-squares finite element model for static analysis of multilayered composite plates , 2011 .

[15]  S. Adhikari Doubly Spectral Stochastic Finite-Element Method for Linear Structural Dynamics , 2011 .

[16]  Erasmo Carrera,et al.  Radial basis functions-finite differences collocation and a Unified Formulation for bending, vibration and buckling analysis of laminated plates, according to Murakami's zig-zag theory , 2011 .

[17]  Luke A. Louca,et al.  Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores , 2011 .

[18]  Stefan Hallström,et al.  Energy absorption of SMC/balsa sandwich panels with geometrical triggering features , 2010 .

[19]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[20]  C. Soares,et al.  Spectral stochastic finite element analysis for laminated composite plates , 2008 .

[21]  Michael A. Sprague,et al.  Legendre spectral finite elements for structural dynamics analysis , 2007 .

[22]  Sia Nemat-Nasser,et al.  Experimental investigation of energy-absorption characteristics of components of sandwich structures , 2007 .

[23]  Marek Krawczuk,et al.  Modelling of wave propagation in composite plates using the time domain spectral element method , 2007 .

[24]  A. Young,et al.  Application of the spectral stochastic finite element method for performance prediction of composite structures , 2007 .

[25]  Marek Krawczuk,et al.  Wave propagation modelling in 1D structures using spectral finite elements , 2007 .

[26]  Marek Krawczuk,et al.  Propagation of in-plane waves in an isotropic panel with a crack , 2006 .

[27]  Hyuk-Chun Noh,et al.  A formulation for stochastic finite element analysis of plate structures with uncertain Poisson's ratio , 2004 .

[28]  George Stefanou,et al.  Stochastic finite element analysis of shells with combined random material and geometric properties , 2004 .

[29]  A. Woods,et al.  Spectral finite elements for vibrating rods and beams with random field properties , 2003 .

[30]  Roger Ghanem,et al.  A substructure approach for the midfrequency vibration of stochastic systems. , 2003, The Journal of the Acoustical Society of America.

[31]  G. Falsone,et al.  A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters , 2002 .

[32]  Armen Der Kiureghian,et al.  Comparison of finite element reliability methods , 2002 .

[33]  C. Manohar,et al.  Dynamic stiffness method for circular stochastic Timoshenko beams: Response variability and reliability analyses , 2002 .

[34]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[35]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[36]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[37]  Pinhas Z. Bar-Yoseph,et al.  Plate spectral elements based upon Reissner–Mindlin theory , 1995 .

[38]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[39]  Yeoshua Frostig,et al.  High‐Order Theory for Sandwich‐Beam Behavior with Transversely Flexible Core , 1992 .

[40]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[41]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[42]  M. Shinozuka,et al.  Random fields and stochastic finite elements , 1986 .

[43]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[44]  Marie Faerber,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2016 .

[45]  Abdul Hamid Sheikh,et al.  Stochastic Free Vibration Response of Soft Core Sandwich Plates Using an Improved Higher-Order Zigzag Theory , 2010 .

[46]  S. Oskooei,et al.  Higher-Order Finite Element for Sandwich Plates , 2000 .

[47]  C. S. Manohar,et al.  Transient Dynamics of Stochastically Parametered Beams , 2000 .

[48]  C. S. Manohar,et al.  Dynamic stiffness of randomly parametered beams , 1998 .

[49]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .