Hermes: a simple and efficient algorithm for building the AOC-poset of a binary relation

Given a relation 𝓡 ⊆ 𝓞 × 𝓐 on a set 𝓞 of objects and a set 𝓐 of attributes, the AOC-poset (Attribute/Object Concept poset), is the partial order defined on the “introducers” of objects and attributes in the corresponding concept lattice. In this paper, we present Hermes, a simple and efficient algorithm for building an AOC-poset which runs in O(min{nm, nα}), where n is the number of objects plus the number of attributes, m is the size of the relation, and nα is the time required to perform matrix multiplication (currently α = 2.376). Finally, we compare the runtime of Hermes with the runtime of other algorithms computing the AOC-poset: Ares, Ceres and Pluton. We characterize the cases where each algorithm is the more relevant.

[1]  Pascal Hitzler,et al.  Default Reasoning over Domains and Concept Hierarchies , 2004, KI.

[2]  Yiming Yang,et al.  Domain Feature Model Recovery from Multiple Applications Using Data Access Semantics and Formal Concept Analysis , 2009, 2009 16th Working Conference on Reverse Engineering.

[3]  Zhenchang Xing,et al.  Feature Location in a Collection of Product Variants , 2012, 2012 19th Working Conference on Reverse Engineering.

[4]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[5]  Yiyu Yao,et al.  A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis , 2004, Rough Sets and Current Trends in Computing.

[6]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[7]  Wiebke Petersen,et al.  A Set-Theoretical Approach for the Induction of Inheritance Hierarchies , 2004, FGMOL.

[8]  Marianne Huchard,et al.  On automatic class insertion with overloading , 1996, OOPSLA '96.

[9]  Hafedh Mili,et al.  Building and maintaining analysis-level class hierarchies using Galois Lattices , 1993, OOPSLA '93.

[10]  F. Loesch,et al.  Restructuring Variability in Software Product Lines using Concept Analysis of Product Configurations , 2007, 11th European Conference on Software Maintenance and Reengineering (CSMR'07).

[11]  Jeremy P. Spinrad,et al.  Doubly Lexical Ordering of Dense 0 - 1 Matrices , 1993, Inf. Process. Lett..

[12]  Wen-Lian Hsu,et al.  Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..

[13]  Guy W. Mineau,et al.  Structuring knowledge bases using automatic learning , 1990, [1990] Proceedings. Sixth International Conference on Data Engineering.

[14]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[15]  Rainer Osswald,et al.  Induction of Classifications from Linguistic Data , 2002 .

[16]  Alain Sigayret Data Mining : une approche par les graphes , 2002 .

[17]  Florence Le Ber,et al.  AOC-Posets: a Scalable Alternative to Concept Lattices for Relational Concept Analysis , 2013, CLA.

[18]  Elaine M. Eschen,et al.  Consecutive-ones: Handling Lattice Planarity Efficiently , 2007, CLA.

[19]  Didier Dubois,et al.  A Possibility-Theoretic View of Formal Concept Analysis , 2007, Fundam. Informaticae.

[20]  Anna Lubiw,et al.  Doubly Lexical Orderings of Matrices , 1987, SIAM J. Comput..

[21]  Didier Dubois,et al.  From Blanché’s Hexagonal Organization of Concepts to Formal Concept Analysis and Possibility Theory , 2012, Logica Universalis.

[22]  Rokia Missaoui,et al.  Design of Class Hierarchies Based on Concept (Galois) Lattices , 1998, Theory Pract. Object Syst..

[23]  Marianne Huchard,et al.  Performances of Galois Sub-hierarchy-building Algorithms , 2007, ICFCA.

[24]  Marianne Huchard,et al.  ARES, un algorithme d'Ajout avec REStructuration dans les hiérarchies de classes , 1994, LMO.

[25]  Klaus Kabitzsch,et al.  Extraction of feature models from formal contexts , 2011, SPLC '11.

[26]  Jeremy P. Spinrad,et al.  Efficiently Computing a Linear Extension of the Sub-hierarchy of a Concept Lattice , 2005, ICFCA.

[27]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[28]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[29]  R. Osswald,et al.  A Logical Approach to Data-Driven Classification , 2003, KI.

[30]  Anne Berry,et al.  Maintaining Class Membership Information , 2002, OOIS Workshops.

[31]  Anne Berry,et al.  A local approach to concept generation , 2007, Annals of Mathematics and Artificial Intelligence.

[32]  Marianne Huchard,et al.  ARES, Adding a class and REStructuring Inheritance Hierarchy , 1995, BDA.

[33]  H. Leblanc Sous-hiérarchie de Galois : un modèle pour la construction et l'évolution des hiérarchies d'objets , 2000 .

[34]  Hervé Leblanc,et al.  Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..

[35]  Amedeo Napoli,et al.  Relational concept analysis: mining concept lattices from multi-relational data , 2013, Annals of Mathematics and Artificial Intelligence.