Giant random telegraph signal generated by single charge trapping in submicron n-metal-oxide-semiconductor field-effect transistors

We report on the current fluctuations of random telegraph signal experimentally observed at cryogenic temperatures in ordinary submicron Si∕SiO2 metal-oxide-semiconductor field-effect transistors (MOSFETs). A giant drain current fluctuation ΔI∕I up to 55% is observed at sub-Kelvin temperature in samples with a large channel width. The current variation is compatible with predictions for decanano MOSFETs at room temperature. The similarity suggests the formation of a quasi-one-dimensional conduction channel at gate voltages sufficiently close to the threshold voltage.

[1]  M. Schulz,et al.  Random telegraph signal: An atomic probe of the local current in field-effect transistors , 1998 .

[2]  K. Kandiah,et al.  A physical model for random telegraph signal currents in semiconductor devices , 1989 .

[3]  Marco Fanciulli,et al.  Manipulation of localized charge states in n-MOSFETs with microwave irradiation , 2008 .

[4]  E. Simoen,et al.  Random Telegraph Signal: a local probe for single point defect studies in solid-state devices , 2002 .

[5]  Asen Asenov,et al.  Random telegraph signal noise simulation of decanano MOSFETs subject to atomic scale structure variation , 2003 .

[6]  Wheeler Rg,et al.  Resonant tunneling through single electronic states and its suppression in a magnetic field. , 1988 .

[7]  Alessandro Calderoni,et al.  Microwave irradiation effects on random telegraph signal in a MOSFET , 2007 .

[8]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[9]  Webb,et al.  Observation of resonant tunneling in silicon inversion layers. , 1986, Physical review letters.

[10]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[11]  A. Asenov,et al.  Impact of single charge trapping in nano-MOSFETs-electrostatics versus transport effects , 2005, IEEE Transactions on Nanotechnology.

[12]  R. Lamb,et al.  Ruthenium oxide and strontium ruthenate electrodes for ferroelectric thin-films capacitors , 2000 .

[13]  J. A. López-Villanueva,et al.  Quantum two-dimensional calculation of time constants of random telegraph signals in metal-oxide-semiconductor structures , 1997 .

[14]  Michael J. Uren,et al.  1/f and random telegraph noise in silicon metal‐oxide‐semiconductor field‐effect transistors , 1985 .

[15]  G. Ferrari,et al.  dc modulation in field-effect transistors operating under microwave irradiation for quantum readout , 2005 .

[16]  Lee,et al.  Two-dimensional resonant tunneling. , 1988, Physical review. B, Condensed matter.

[17]  G. Ferrari,et al.  Effect of the triplet state on the random telegraph signal in Si n-MOSFETs , 2005, cond-mat/0512692.

[18]  A. Visconti,et al.  Giant Random Telegraph Signals in Nanoscale Floating-Gate Devices , 2007, IEEE Electron Device Letters.

[19]  R. Howard,et al.  Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( 1 f ?) Noise , 1984 .

[20]  E. Yablonovitch,et al.  Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor , 2004, Nature.

[21]  I. Martin,et al.  A scheme for electrical detection of single-electron spin resonance. , 2003, Physical review letters.

[22]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.