The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription.

[1]  S. J. Flint,et al.  Nucleolin Is Required for RNA Polymerase I Transcription In Vivo , 2006, Molecular and Cellular Biology.

[2]  J. Workman,et al.  RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. , 2006, Molecular cell.

[3]  J. Workman,et al.  SWI/SNF Displaces SAGA-Acetylated Nucleosomes , 2006, Eukaryotic Cell.

[4]  D. Patel,et al.  Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF , 2006, Nature.

[5]  V. Verkhusha,et al.  Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2 , 2006, Nature.

[6]  Thomas A. Milne,et al.  A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling , 2006, Nature.

[7]  Anjanabha Saha,et al.  ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression , 2006, Nature.

[8]  P. Howley,et al.  Bromodomain Protein 4 Mediates the Papillomavirus E2 Transcriptional Activation Function , 2006, Journal of Virology.

[9]  P. Cong,et al.  The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain , 2006, Journal of cellular biochemistry.

[10]  N. Friedman,et al.  Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae , 2005, PLoS biology.

[11]  J. Brady,et al.  The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. , 2005, Molecular cell.

[12]  Qiang Zhou,et al.  Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. , 2005, Molecular cell.

[13]  K. Mimori,et al.  Differentially expressed genes in endothelial differentiation. , 2005, DNA and cell biology.

[14]  X. de la Cruz,et al.  Do protein motifs read the histone code? , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[16]  Xiang-Jiao Yang,et al.  Lysine acetylation and the bromodomain: a new partnership for signaling , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  Xiangyuan Wang,et al.  Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. , 2004, Gene expression patterns : GEP.

[18]  C. Peterson,et al.  Histones and histone modifications , 2004, Current Biology.

[19]  Saeed Tavazoie,et al.  Mapping Global Histone Acetylation Patterns to Gene Expression , 2004, Cell.

[20]  P. Howley,et al.  Interaction of the Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic Chromosomes , 2004, Cell.

[21]  Y. Kanno,et al.  Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. , 2004, Molecules and Cells.

[22]  T. R. Hebbes,et al.  Native chromatin immunoprecipitation. , 2004, Methods in molecular biology.

[23]  S. Grewal,et al.  Heterochromatin: silence is golden , 2003, Current Biology.

[24]  D. Reinberg,et al.  Histone deposition and chromatin assembly by RSF. , 2003, Methods.

[25]  C. Caron,et al.  Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein , 2003, Molecular and Cellular Biology.

[26]  Tom Misteli,et al.  The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Jenuwein,et al.  An epigenetic road map for histone lysine methylation , 2003, Journal of Cell Science.

[28]  R. Tjian,et al.  Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. , 2003, Molecular cell.

[29]  Stuart L. Schreiber,et al.  Active genes are tri-methylated at K4 of histone H3 , 2002, Nature.

[30]  D. Wolgemuth,et al.  Reproductive cycle regulation of nuclear import, euchromatic localization, and association with components of Pol II mediator of a mammalian double-bromodomain protein. , 2002, Molecular endocrinology.

[31]  M. Cole,et al.  TRRAP-Dependent and TRRAP-Independent Transcriptional Activation by Myc Family Oncoproteins , 2002, Molecular and Cellular Biology.

[32]  T. Jenuwein,et al.  The many faces of histone lysine methylation. , 2002, Current opinion in cell biology.

[33]  S. Jacobs,et al.  Structure of HP1 Chromodomain Bound to a Lysine 9-Methylated Histone H3 Tail , 2002, Science.

[34]  L. Szekely,et al.  Latent nuclear antigen of Kaposi's sarcoma herpesvirus/human herpesvirus-8 induces and relocates RING3 to nuclear heterochromatin regions. , 2002, The Journal of general virology.

[35]  D. Reinberg,et al.  Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. , 2001, Genes & development.

[36]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[37]  D. Faller,et al.  You bet-cha: a novel family of transcriptional regulators. , 2001, Frontiers in bioscience : a journal and virtual library.

[38]  J. Lippincott-Schwartz,et al.  A Bromodomain Protein, MCAP, Associates with Mitotic Chromosomes and Affects G2-to-M Transition , 2000, Molecular and Cellular Biology.

[39]  D. Faller,et al.  RING3 kinase transactivates promoters of cell cycle regulatory genes through E2F. , 2000, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[40]  R. Tjian,et al.  Structure and function of a human TAFII250 double bromodomain module. , 2000, Science.

[41]  G. Orphanides,et al.  The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins , 1999, Nature.

[42]  Lei Zeng,et al.  Structure and ligand of a histone acetyltransferase bromodomain , 1999, Nature.

[43]  G. Orphanides,et al.  FACT, a Factor that Facilitates Transcript Elongation through Nucleosomes , 1998, Cell.

[44]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[45]  D. Reinberg,et al.  Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. , 1992, The Journal of biological chemistry.

[46]  A. Wolffe,et al.  The histone core exerts a dominant constraint on the structure of DNA in a nucleosome. , 1991, Biochemistry.

[47]  M. Horikoshi,et al.  Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. T. Kadonaga Assembly and disassembly of the Drosophila RNA polymerase II complex during transcription. , 1990, The Journal of biological chemistry.

[49]  R. Conaway,et al.  An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. R. Hebbes,et al.  A direct link between core histone acetylation and transcriptionally active chromatin. , 1988, The EMBO journal.