Robust matrix estimations meet Frank–Wolfe algorithm

[1]  Dmitriy Drusvyatskiy,et al.  Low-Rank Matrix Recovery with Composite Optimization: Good Conditioning and Rapid Convergence , 2019, Found. Comput. Math..

[2]  Vladimir Kolmogorov,et al.  MAP Inference via Block-Coordinate Frank-Wolfe Algorithm , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Jianqing Fan,et al.  A NEW PERSPECTIVE ON ROBUST M-ESTIMATION: FINITE SAMPLE THEORY AND APPLICATIONS TO DEPENDENCE-ADJUSTED MULTIPLE TESTING. , 2017, Annals of statistics.

[4]  Qiang Sun,et al.  Adaptive Huber Regression , 2017, Journal of the American Statistical Association.

[5]  S. Geer,et al.  Robust low-rank matrix estimation , 2016, The Annals of Statistics.

[6]  Weichen Wang,et al.  A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY. , 2016, Annals of statistics.

[7]  Alexander J. Smola,et al.  Stochastic Variance Reduction for Nonconvex Optimization , 2016, ICML.

[8]  Martin Jaggi,et al.  On the Global Linear Convergence of Frank-Wolfe Optimization Variants , 2015, NIPS.

[9]  Paul Grigas,et al.  An Extended Frank-Wolfe Method with "In-Face" Directions, and Its Application to Low-Rank Matrix Completion , 2015, SIAM J. Optim..

[10]  Y. She,et al.  Robust reduced-rank regression , 2015, Biometrika.

[11]  Thomas C. M. Lee,et al.  Matrix Completion with Noisy Entries and Outliers , 2015, J. Mach. Learn. Res..

[12]  Po-Ling Loh,et al.  Statistical consistency and asymptotic normality for high-dimensional robust M-estimators , 2015, ArXiv.

[13]  Paul Grigas,et al.  New analysis and results for the Frank–Wolfe method , 2013, Mathematical Programming.

[14]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[15]  S. Boucheron,et al.  Concentration Inequalities: A Nonasymptotic Theory of Independence , 2013 .

[16]  O. Klopp Noisy low-rank matrix completion with general sampling distribution , 2012, 1203.0108.

[17]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[18]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[19]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[20]  A. Tsybakov,et al.  Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.

[21]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[22]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[23]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[24]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[25]  R. H. Moore,et al.  Regression Graphics: Ideas for Studying Regressions Through Graphics , 1998, Technometrics.

[26]  G. Reinsel,et al.  Multivariate Reduced-Rank Regression: Theory and Applications , 1998 .

[27]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[28]  Xiaoming Yuan,et al.  Matrix completion via an alternating direction method , 2012 .

[29]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[30]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[31]  O. Bousquet A Bennett concentration inequality and its application to suprema of empirical processes , 2002 .

[32]  P. Rousseeuw,et al.  Robust statistics: the approach based on influence functions , 1986 .