暂无分享,去创建一个
Daniel Král | Anita Liebenau | Frantisek Kardos | Lukás Mach | D. Král | Anita Liebenau | Frantisek Kardos | Lukás Mach
[1] Oleg Pikhurko,et al. Poset limits can be totally ordered , 2012, 1211.2473.
[2] James G. Oxley,et al. Matroid theory , 1992 .
[3] D. Welsh,et al. The computational complexity of matroid properties , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Petr Hlinený,et al. On Matroid Representability and Minor Problems , 2006, MFCS.
[5] Petr Hlinený,et al. A Parametrized Algorithm for Matroid Branch-Width , 2005, SIAM J. Comput..
[6] Jaroslav Nesetril,et al. A Unified Approach to Structural Limits and Limits of Graphs with Bounded Tree-Depth , 2013, Memoirs of the American Mathematical Society.
[7] Daniel Král,et al. Computing Representations of Matroids of Bounded Branch-Width , 2007, STACS.
[8] D. Aldous,et al. Processes on Unimodular Random Networks , 2006, math/0603062.
[9] Bogdan Oporowski,et al. Unavoidable minors of graphs of large type , 2002, Discret. Math..
[10] Jaroslav Nesetril,et al. A Model Theory Approach to Structural Limits , 2012 .
[11] G. Elek. On limits of finite graphs , 2005, math/0505335.
[12] O. Cohen. Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .
[13] B. Szegedy,et al. Testing properties of graphs and functions , 2008, 0803.1248.
[14] B. Szegedy,et al. Limits of locally–globally convergent graph sequences , 2014 .
[15] Rudini Menezes Sampaio,et al. Limits of permutation sequences , 2011, J. Comb. Theory, Ser. B.
[16] Paul D. Seymour,et al. Testing branch-width , 2007, J. Comb. Theory, Ser. B.
[17] G'abor Elek,et al. A measure-theoretic approach to the theory of dense hypergraphs , 2008, 0810.4062.
[18] Daniel Král,et al. Deciding first order logic properties of matroids , 2011, ArXiv.
[19] László Lovász,et al. Graph limits and parameter testing , 2006, STOC '06.
[20] Petr Hlinený,et al. Branch-width, parse trees, and monadic second-order logic for matroids , 2003, J. Comb. Theory, Ser. B.
[21] Jaroslav Nesetril,et al. Modeling Limits in Hereditary Classes: Reduction and Application to Trees , 2016, Electron. J. Comb..
[22] László Lovász,et al. Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.
[23] Y. Kohayakawa,et al. Limits of permutation sequences through permutation regularity , 2011, 1106.1663.
[24] Gábor Elek. Note on limits of finite graphs , 2007, Comb..
[25] P. Ossona de Mendez,et al. Existence of Modeling Limits for sequences of Sparse Structures , 2019, J. Symb. Log..
[26] David Gamarnik,et al. Convergent sequences of sparse graphs: A large deviations approach , 2013, Random Struct. Algorithms.
[27] Oleg Pikhurko,et al. Quasirandom permutations are characterized by 4-point densities , 2012, 1205.3074.
[28] Svante Janson,et al. Poset limits and exchangeable random posets , 2009, Comb..
[29] Jaroslav Nesetril,et al. Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.
[30] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.
[31] R. Diestel,et al. Axioms for infinite matroids , 2010, 1003.3919.
[32] Béla Bollobás,et al. Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.
[33] V. Sós,et al. Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.
[34] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[35] M. Bálek,et al. Large Networks and Graph Limits , 2022 .
[36] W. T. Tutte. An algorithm for determining whether a given binary matroid is graphic. , 1960 .
[37] László Lovász,et al. Limits of dense graph sequences , 2004, J. Comb. Theory B.
[38] V. Sós,et al. Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .
[39] J. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics) , 2006 .
[40] Daniel Král,et al. First order limits of sparse graphs: Plane trees and path-width , 2017, Random Struct. Algorithms.
[41] Paul D. Seymour,et al. Recognizing graphic matroids , 1981 .