First order convergence of matroids

The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a fixed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed.

[1]  Oleg Pikhurko,et al.  Poset limits can be totally ordered , 2012, 1211.2473.

[2]  James G. Oxley,et al.  Matroid theory , 1992 .

[3]  D. Welsh,et al.  The computational complexity of matroid properties , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Petr Hlinený,et al.  On Matroid Representability and Minor Problems , 2006, MFCS.

[5]  Petr Hlinený,et al.  A Parametrized Algorithm for Matroid Branch-Width , 2005, SIAM J. Comput..

[6]  Jaroslav Nesetril,et al.  A Unified Approach to Structural Limits and Limits of Graphs with Bounded Tree-Depth , 2013, Memoirs of the American Mathematical Society.

[7]  Daniel Král,et al.  Computing Representations of Matroids of Bounded Branch-Width , 2007, STACS.

[8]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[9]  Bogdan Oporowski,et al.  Unavoidable minors of graphs of large type , 2002, Discret. Math..

[10]  Jaroslav Nesetril,et al.  A Model Theory Approach to Structural Limits , 2012 .

[11]  G. Elek On limits of finite graphs , 2005, math/0505335.

[12]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[13]  B. Szegedy,et al.  Testing properties of graphs and functions , 2008, 0803.1248.

[14]  B. Szegedy,et al.  Limits of locally–globally convergent graph sequences , 2014 .

[15]  Rudini Menezes Sampaio,et al.  Limits of permutation sequences , 2011, J. Comb. Theory, Ser. B.

[16]  Paul D. Seymour,et al.  Testing branch-width , 2007, J. Comb. Theory, Ser. B.

[17]  G'abor Elek,et al.  A measure-theoretic approach to the theory of dense hypergraphs , 2008, 0810.4062.

[18]  Daniel Král,et al.  Deciding first order logic properties of matroids , 2011, ArXiv.

[19]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[20]  Petr Hlinený,et al.  Branch-width, parse trees, and monadic second-order logic for matroids , 2003, J. Comb. Theory, Ser. B.

[21]  Jaroslav Nesetril,et al.  Modeling Limits in Hereditary Classes: Reduction and Application to Trees , 2016, Electron. J. Comb..

[22]  László Lovász,et al.  Left and right convergence of graphs with bounded degree , 2010, Random Struct. Algorithms.

[23]  Y. Kohayakawa,et al.  Limits of permutation sequences through permutation regularity , 2011, 1106.1663.

[24]  Gábor Elek Note on limits of finite graphs , 2007, Comb..

[25]  P. Ossona de Mendez,et al.  Existence of Modeling Limits for sequences of Sparse Structures , 2019, J. Symb. Log..

[26]  David Gamarnik,et al.  Convergent sequences of sparse graphs: A large deviations approach , 2013, Random Struct. Algorithms.

[27]  Oleg Pikhurko,et al.  Quasirandom permutations are characterized by 4-point densities , 2012, 1205.3074.

[28]  Svante Janson,et al.  Poset limits and exchangeable random posets , 2009, Comb..

[29]  Jaroslav Nesetril,et al.  Sparsity - Graphs, Structures, and Algorithms , 2012, Algorithms and combinatorics.

[30]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[31]  R. Diestel,et al.  Axioms for infinite matroids , 2010, 1003.3919.

[32]  Béla Bollobás,et al.  Sparse graphs: Metrics and random models , 2008, Random Struct. Algorithms.

[33]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[34]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[35]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[36]  W. T. Tutte An algorithm for determining whether a given binary matroid is graphic. , 1960 .

[37]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[38]  V. Sós,et al.  Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .

[39]  J. Oxley Matroid Theory (Oxford Graduate Texts in Mathematics) , 2006 .

[40]  Daniel Král,et al.  First order limits of sparse graphs: Plane trees and path-width , 2017, Random Struct. Algorithms.

[41]  Paul D. Seymour,et al.  Recognizing graphic matroids , 1981 .