An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data

[1]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[2]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[3]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[4]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[5]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[6]  Wilfried Brutsaert,et al.  Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation , 1992 .

[7]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[8]  William P. Kustas,et al.  Use of remote sensing for evapotranspiration monitoring over land surfaces , 1996 .

[9]  Y. Xue,et al.  Modeling of land surface evaporation by four schemes and comparison with FIFE observations , 1996 .

[10]  Wilfried Brutsaert,et al.  Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio , 1996 .

[11]  A. Holtslag,et al.  On the bulk parameterization of surface fluxes for various conditions and parameter ranges , 1997 .

[12]  George J. Huffman,et al.  Estimates of Root-Mean-Square Random Error for Finite Samples of Estimated Precipitation , 1997 .

[13]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[14]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[15]  Le Jiang,et al.  A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations , 1999 .

[16]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[17]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[18]  C. M. Kishtawal,et al.  Multimodel Ensemble Forecasts for Weather and Seasonal Climate , 2000 .

[19]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[20]  William P. Kustas,et al.  An Evaluation of Two Models for Estimation of the Roughness Height for Heat Transfer between the Land Surface and the Atmosphere , 2001 .

[21]  D. Jupp,et al.  Using covariates to spatially interpolate moisture availability in the Murray–Darling Basin: A novel use of remotely sensed data , 2002 .

[22]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[23]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[24]  T. Komatsu,et al.  NOTES AND CORRESPONDENCE Toward a Robust Phenomenological Expression of Evaporation Efficiency for Unsaturated Soil Surfaces , 2003 .

[25]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[26]  W. Kustas,et al.  Comparison of energy balance modeling schemes using microwave‐derived soil moisture and radiometric surface temperature , 2003 .

[27]  O. Boucher,et al.  Direct human influence of irrigation on atmospheric water vapour and climate , 2004 .

[28]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[29]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[30]  Mark R. Rosenzweig,et al.  Agricultural Productivity Growth, Rural Economic Diversity, and Economic Reforms: India, 1970–2000* , 2004, Economic Development and Cultural Change.

[31]  F. Aires,et al.  Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: Relationship of satellite observations to in situ soil moisture measurements , 2005 .

[32]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[33]  I. A. Walter,et al.  The ASCE standardized reference evapotranspiration equation , 2005 .

[34]  Matthew F. McCabe,et al.  Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA) , 2005 .

[35]  Wilfried Brutsaert,et al.  Hydrology: An Introduction , 2005 .

[36]  P. Xavier,et al.  Increasing Trend of Extreme Rain Events Over India in a Warming Environment , 2006, Science.

[37]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[38]  Hubert H. G. Savenije,et al.  The bias in GRACE estimates of continental water storage variations , 2006 .

[39]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[40]  N. Christidis,et al.  Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model , 2006 .

[41]  Matthew F. McCabe,et al.  Evaluation of Remotely Sensed Evapotranspiration Over the CEOP EOP-1 Reference Sites , 2007 .

[42]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[43]  J. Wallace,et al.  Evaporation from sparse crops‐an energy combination theory , 2007 .

[44]  Martin Wild,et al.  Impact of global dimming and brightening on global warming , 2007 .

[45]  Ashwani Kumar,et al.  Surface energy fluxes and crop water stress index in groundnut under irrigated ecosystem , 2007 .

[46]  R. Seager,et al.  Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America , 2007, Science.

[47]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[48]  Lara M. Kueppers,et al.  Irrigation cooling effect: Regional climate forcing by land‐use change , 2007 .

[49]  J. Monteith Evaporation and surface temperature , 2007 .

[50]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[51]  Zhongbo Su,et al.  Estimation of Land Surface Heat Fluxes over the Tibetan Plateau Using GMS Data , 2007 .

[52]  J. A. Tolk,et al.  ET mapping for agricultural water management: present status and challenges , 2008, Irrigation Science.

[53]  R. Gupta,et al.  A review of resource conserving technologies for sustainable management of the rice–wheat cropping systems of the Indo-Gangetic plains (IGP) , 2007 .

[54]  K. Trenberth,et al.  Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data , 2007 .

[55]  William P. Kustas,et al.  An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes , 2007 .

[56]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[57]  Rezaul Mahmood,et al.  Increase in Near-Surface Atmospheric Moisture Content due to Land Use Changes: Evidence from the Observed Dewpoint Temperature Data , 2008 .

[58]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[59]  A. Gulati,et al.  Investment, subsidies, and pro‐poor growth in rural India , 2008 .

[60]  Peter W. Thorne,et al.  Recent Changes in Surface Humidity: Development of the HadCRUH Dataset , 2008 .

[61]  Michael G. Bosilovich,et al.  A Multimodel Analysis for the Coordinated Enhanced Observing Period (CEOP) , 2009 .

[62]  Yaning Chen,et al.  Global perspective on hydrology, water balance, and water resources management in arid basins , 2009 .

[63]  Kaniska Mallick,et al.  Latent heat flux estimation in clear sky days over Indian agroecosystems using noontime satellite remote sensing data , 2009 .

[64]  Martin Wild,et al.  Global dimming and brightening: A review , 2009 .

[65]  William P. Kustas,et al.  An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX , 2009 .

[66]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[67]  Claude N. Williams,et al.  Radiosonde‐based trends in precipitable water over the Northern Hemisphere: An update , 2009 .

[68]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[69]  David B. Lobell,et al.  Regional Differences in the Influence of Irrigation on Climate , 2009 .

[70]  Martha C. Anderson,et al.  Advances in thermal infrared remote sensing for land surface modeling , 2009 .

[71]  G. Huffman,et al.  The TRMM Multi-Satellite Precipitation Analysis (TMPA) , 2010 .

[72]  F. Landerer,et al.  Terrestrial water budget of the Eurasian pan‐Arctic from GRACE satellite measurements during 2003–2009 , 2010 .

[73]  Hideyuki Shimizu,et al.  Plant responses to drought and rewatering , 2010, Plant signaling & behavior.

[74]  D. Toll,et al.  Simulating the Effects of Irrigation over the United States in a Land Surface Model Based on Satellite-Derived Agricultural Data , 2010 .

[75]  Hugh Turral,et al.  Climate change, water and food security. , 2011 .

[76]  Eric F. Wood,et al.  Multi‐model, multi‐sensor estimates of global evapotranspiration: climatology, uncertainties and trends , 2011 .

[77]  Ayse Irmak,et al.  Satellite‐based ET estimation in agriculture using SEBAL and METRIC , 2011 .

[78]  Zhao-Liang Li,et al.  How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? , 2011 .

[79]  Kuolin Hsu,et al.  How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote‐sensing data , 2011 .

[80]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[81]  S. Seneviratne,et al.  Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations , 2011 .

[82]  Pamela L. Nagler,et al.  Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods , 2011 .

[83]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[84]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[85]  Di Long,et al.  A modified surface energy balance algorithm for land (M‐SEBAL) based on a trapezoidal framework , 2012 .

[86]  N. Mahowald,et al.  Global review and synthesis of trends in observed terrestrial near-surface wind speeds; implications for evaporation , 2012 .

[87]  V. Singh,et al.  A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery , 2012 .

[88]  B. Sarr Present and future climate change in the semi‐arid region of West Africa: a crucial input for practical adaptation in agriculture , 2012 .

[89]  Arjen Ysbert Hoekstra,et al.  Determining Irrigated Areas and Quantifying Blue Water Use in Europe Using Remote Sensing Meteosat Second Generation (MSG) products and Global Land Data Assimilation System (GLDAS) Data , 2012 .

[90]  S. Sorooshian,et al.  Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: Results and comparative studies from California's Central Valley agricultural regions , 2012 .

[91]  Paul D. Colaizzi,et al.  Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures☆ , 2012 .

[92]  Martha C. Anderson,et al.  Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources , 2012 .

[93]  Muddu Sekhar,et al.  A simple model for spatial disaggregation of evaporative fraction: Comparative study with thermal sharpened land surface temperature data over India , 2013 .

[94]  G. Senay,et al.  A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET , 2013 .

[95]  Ronglin Tang,et al.  Temporal upscaling of instantaneous evapotranspiration: An intercomparison of four methods using eddy covariance measurements and MODIS data , 2013 .

[96]  J. Townshend,et al.  A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies , 2013 .

[97]  Ronglin Tang,et al.  Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data , 2013 .

[98]  Prasanna H. Gowda,et al.  Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach , 2013 .

[99]  José E. Castillo,et al.  A high performance GPU implementation of Surface Energy Balance System (SEBS) based on CUDA-C , 2013, Environ. Model. Softw..

[100]  Alessandro Anav,et al.  Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011 , 2013, Remote. Sens..

[101]  Olivier Merlin,et al.  Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate , 2013 .

[102]  Yu Zhang,et al.  An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau , 2013 .

[103]  Di Long,et al.  Remote estimation of terrestrial evapotranspiration without using meteorological data , 2013 .

[104]  A. Dai Increasing drought under global warming in observations and models , 2013 .

[105]  Jiangfeng Wei,et al.  Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA , 2013 .

[106]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[107]  Nico Sneeuw,et al.  Estimating Runoff Using Hydro-Geodetic Approaches , 2014, Surveys in Geophysics.

[108]  Yuei-An Liou,et al.  Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review , 2014 .

[109]  J. Ardö,et al.  A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes , 2014 .

[110]  James P. Verdin,et al.  Actual Evapotranspiration (Water Use) Assessment of the Colorado River Basin at the Landsat Resolution Using the Operational Simplified Surface Energy Balance Model , 2013, Remote. Sens..

[111]  Martha C. Anderson,et al.  Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin , 2014 .

[112]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[113]  Nico Sneeuw,et al.  Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances* , 2014 .

[114]  Julian M. Alston,et al.  Agriculture in the Global Economy , 2014 .

[115]  G. Balsamo,et al.  The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data , 2014 .

[116]  D. Chambers,et al.  GRACE, time-varying gravity, Earth system dynamics and climate change , 2014, Reports on progress in physics. Physical Society.

[117]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[118]  Terry A. Howell,et al.  Investigating the influence of roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems , 2014 .

[119]  B. Scanlon,et al.  Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites , 2014 .

[120]  D. Tilman,et al.  Global diets link environmental sustainability and human health , 2014, Nature.

[121]  Lutz Breuer,et al.  Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging , 2014 .

[122]  Olivier Hagolle,et al.  A snow cover climatology for the Pyrenees from MODIS snow products , 2014 .

[123]  Matthew F. McCabe,et al.  The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data , 2015 .

[124]  Kelly R. Thorp,et al.  Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models , 2015 .

[125]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets , 2015 .

[126]  The limits of increasing food production with irrigation in India , 2015, Food Security.

[127]  James W. Jones,et al.  Multimodel ensembles of wheat growth: many models are better than one , 2015, Global change biology.

[128]  D. Long,et al.  Comparison of three dual‐source remote sensing evapotranspiration models during the MUSOEXE‐12 campaign: Revisit of model physics , 2015 .

[129]  Daniel P. Loucks,et al.  Water management: Current and future challenges and research directions , 2015 .

[130]  S. Kanae,et al.  Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts , 2015 .

[131]  Matthew Rodell,et al.  Groundwater Storage Changes: Present Status from GRACE Observations , 2016, Surveys in Geophysics.

[132]  S. Swenson,et al.  Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models , 2015 .

[133]  Cristina Milesi,et al.  Global Cropland Area Database (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities , 2015 .

[134]  Gabriel B. Senay,et al.  Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwestern United States , 2015 .

[135]  B. Scanlon,et al.  Global analysis of approaches for deriving total water storage changes from GRACE satellites , 2015 .

[136]  Matthew F. McCabe,et al.  The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms , 2015 .

[137]  William P. Kustas,et al.  Reintroducing radiometric surface temperature into the Penman‐Monteith formulation , 2015 .

[138]  Valeriy Y. Ivanov,et al.  Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale , 2016 .

[139]  A. Mishra,et al.  Crop-specific seasonal estimates of irrigation water demand in South Asia , 2016 .

[140]  Trent W. Biggs,et al.  Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison , 2016 .

[141]  W. Dorigo,et al.  A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset , 2016 .

[142]  Yi Y. Liu,et al.  Multi-decadal trends in global terrestrial evapotranspiration and its components , 2016, Scientific Reports.

[143]  Youngryel Ryu,et al.  Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS) , 2016 .

[144]  Vimal Mishra,et al.  Descriptor : Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015 , 2017 .

[145]  Lars Ribbe,et al.  Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study , 2016 .

[146]  Lorenzo Busetto,et al.  MODIStsp: An R package for automatic preprocessing of MODIS Land Products time series , 2016, Comput. Geosci..

[147]  S. Running,et al.  A review of remote sensing based actual evapotranspiration estimation , 2016 .

[148]  Jungho Im,et al.  Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[149]  Eva Boegh,et al.  Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin , 2016 .

[150]  Nico Sneeuw,et al.  Minimizing the effects of filtering on catchment scale GRACE solutions , 2016 .

[151]  P. Scarborough,et al.  Analysis and valuation of the health and climate change cobenefits of dietary change , 2016, Proceedings of the National Academy of Sciences.

[152]  Martha C. Anderson,et al.  Integrating Global Satellite-Derived Data Products as a Pre-Analysis for Hydrological Modelling Studies: A Case Study for the Red River Basin , 2016, Remote. Sens..

[153]  C. Shi,et al.  Ensemble simulation of land evapotranspiration in China based on a multi-forcing and multi-model approach , 2016, Advances in Atmospheric Sciences.

[154]  N. Verhoest,et al.  GLEAM v3: satellite-based land evaporation and root-zone soil moisture , 2016 .

[155]  Lifeng Luo,et al.  Basin‐scale assessment of the land surface water budget in the National Centers for Environmental Prediction operational and research NLDAS‐2 systems , 2016 .

[156]  Evan H. Girvetz,et al.  Reducing risks to food security from climate change , 2016 .

[157]  Beate Klinger,et al.  ITSG-Grace2016 - Monthly and Daily Gravity Field Solutions from GRACE , 2016 .

[158]  Y. Hong,et al.  Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? , 2016, Scientific Reports.

[159]  Muddu Sekhar,et al.  Spatial Disaggregation of Latent Heat Flux Using Contextual Models over India , 2017, Remote. Sens..

[160]  Muddu Sekhar,et al.  Comparison of three remote sensing based models for the estimation of latent heat flux over India , 2017 .

[161]  Ruth S. DeFries,et al.  An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery , 2017, Remote. Sens..

[162]  Jungho Im,et al.  A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models , 2017 .

[163]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[164]  Y. Hong,et al.  Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models , 2017 .

[165]  Vimal Mishra,et al.  Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India , 2017 .

[166]  M. Rodell,et al.  Comparing potential recharge estimates from three Land Surface Models across the Western US. , 2017, Journal of hydrology.

[167]  Nico Sneeuw,et al.  A Data‐Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products , 2017 .

[168]  P. Gowda,et al.  Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions , 2017 .

[169]  Aifeng Lv,et al.  A Universal Ts‐VI Triangle Method for the Continuous Retrieval of Evaporative Fraction From MODIS Products , 2017 .

[170]  F. Dominguez,et al.  How Might Recharge Change Under Projected Climate Change in the Western U.S.? , 2015, Geophysical research letters.

[171]  J. Pal,et al.  Deadly heat waves projected in the densely populated agricultural regions of South Asia , 2017, Science Advances.

[172]  Nathaniel A. Brunsell,et al.  Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US , 2017 .

[173]  P. Gowda,et al.  Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum , 2017 .

[174]  T. McVicar,et al.  Disconnection Between Trends of Atmospheric Drying and Continental Runoff , 2018, Water Resources Research.

[175]  W. Mauser,et al.  A global approach to estimate irrigated areas – a comparison between different data and statistics , 2018 .

[176]  W. Kustas,et al.  Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale , 2018, Remote Sensing of Environment.

[177]  Yazhen Jiang,et al.  Effect of Cloud Cover on Temporal Upscaling of Instantaneous Evapotranspiration , 2018 .

[178]  A. Sörensson,et al.  Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America , 2018 .

[179]  R. Hostache,et al.  A Critical Evaluation on the Role of Aerodynamic and Canopy–Surface Conductance Parameterization in SEB and SVAT Models for Simulating Evapotranspiration: A Case Study in the Upper Biebrza National Park Wetland in Poland , 2018, Water.

[180]  F. Landerer,et al.  Emerging trends in global freshwater availability , 2018, Nature.

[181]  Nico Sneeuw,et al.  What Is the Spatial Resolution of grace Satellite Products for Hydrology? , 2018, Remote. Sens..

[182]  James Cleverly,et al.  Bridging Thermal Infrared Sensing and Physically‐Based Evapotranspiration Modeling: From Theoretical Implementation to Validation Across an Aridity Gradient in Australian Ecosystems , 2018 .

[183]  Chunlin Huang,et al.  Evaluating Soil Resistance Formulations in Thermal‐Based Two‐Source Energy Balance (TSEB) Model: Implications for Heterogeneous Semiarid and Arid Regions , 2019, Water Resources Research.