R2DT: computational framework for template-based RNA secondary structure visualisation across non-coding RNA types

Non-coding RNAs (ncRNA) are essential for all life, and the functions of many ncRNAs depend on their secondary (2D) and tertiary (3D) structure. Despite proliferation of 2D visualisation software, there is a lack of methods for automatically generating 2D representations in consistent, reproducible, and recognisable layouts, making them difficult to construct, compare and analyse. Here we present R2DT, a comprehensive method for visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,632 templates representing the majority of known structured RNAs, from small RNAs to the large subunit ribosomal RNA. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world’s largest RNA 2D structure dataset. The software is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt.

[1]  Emily M. Strait,et al.  The arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome , 2015, Genesis.

[2]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[3]  Martha A. Grover,et al.  Secondary structure and domain architecture of the 23S and 5S rRNAs , 2013, Nucleic acids research.

[4]  Chad R Bernier,et al.  Secondary Structures of rRNAs from All Three Domains of Life , 2014, PloS one.

[5]  Rex L. Chisholm,et al.  dictyBase 2013: integrating multiple Dictyostelid species , 2012, Nucleic Acids Res..

[6]  S. Eddy,et al.  A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs , 2016, Nature Methods.

[7]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[8]  E Westhof,et al.  Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser). , 1993, Journal of molecular biology.

[9]  R. Gutell,et al.  A Comparison of the Crystal Structures of Eukaryotic and Bacterial SSU Ribosomal RNAs Reveals Common Structural Features in the Hypervariable Regions , 2012, PloS one.

[10]  Eric P. Nawrocki,et al.  Structural rna homology search and alignment using covariance models , 2009 .

[11]  R. Gutell,et al.  The accuracy of ribosomal RNA comparative structure models. , 2002, Current opinion in structural biology.

[12]  Peter D. Karp,et al.  The EcoCyc database: reflecting new knowledge about Escherichia coli K-12 , 2016, Nucleic Acids Res..

[13]  E. Westhof,et al.  A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. , 1998, Journal of molecular biology.

[14]  Jürg Bähler,et al.  PomBase 2015: updates to the fission yeast database , 2014, Nucleic Acids Res..

[15]  Kevin Truong,et al.  Identification and characterization of subfamily-specific signatures in a large protein superfamily by a hidden Markov model approach , 2002, BMC Bioinformatics.

[16]  David H. Mathews,et al.  RNAstructure: web servers for RNA secondary structure prediction and analysis , 2013, Nucleic Acids Res..

[17]  E Westhof,et al.  The 9/4 secondary structure of eukaryotic selenocysteine tRNA: more pieces of evidence. , 1998, RNA.

[18]  Bruce A Shapiro,et al.  RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences , 2019, RNA biology.

[19]  Lan Wang,et al.  RiboVision suite for visualization and analysis of ribosomes. , 2014, Faraday discussions.

[20]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[21]  W. Olson,et al.  3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. , 2003, Nucleic acids research.

[22]  Giulia Antonazzo,et al.  FlyBase 2.0: the next generation , 2018, Nucleic Acids Res..

[23]  Judith A. Blake,et al.  Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse , 2017, Nucleic Acids Res..

[24]  Alex Bateman,et al.  RNAcentral: a hub of information for non-coding RNA sequences , 2018, Nucleic Acids Res..

[25]  Sean R. Eddy,et al.  nhmmer: DNA homology search with profile HMMs , 2013, Bioinform..

[26]  Kimberly Van Auken,et al.  WormBase 2012: more genomes, more data, new website , 2011, Nucleic Acids Res..

[27]  Loren Dean Williams,et al.  Translation: The Universal Structural Core of Life , 2018, Molecular biology and evolution.

[28]  Zasha Weinberg,et al.  R2R - software to speed the depiction of aesthetic consensus RNA secondary structures , 2011, BMC Bioinformatics.

[29]  Craig L. Zirbel,et al.  FR3D: finding local and composite recurrent structural motifs in RNA 3D structures , 2007, Journal of mathematical biology.

[30]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[31]  M. Sundaralingam,et al.  Structlre of transfer RNA molecules containing the long variable loop. , 1976, Nucleic acids research.

[32]  Eric Westhof,et al.  Nucleic Acids and Molecular Biology , 1994, Nucleic Acids and Molecular Biology.

[33]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[34]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[35]  Yann Ponty,et al.  VARNA: Interactive drawing and editing of the RNA secondary structure , 2009, Bioinform..

[36]  David Hoksza,et al.  TRAVeLer: a tool for template-based RNA secondary structure visualization , 2017, BMC Bioinformatics.

[37]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[38]  Patricia P. Chan,et al.  tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes , 2019, bioRxiv.

[39]  John D. Westbrook,et al.  Tools for the automatic identification and classification of RNA base pairs , 2003, Nucleic Acids Res..

[40]  Ivo L. Hofacker,et al.  Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams , 2015, Bioinform..

[41]  Yanga Byun,et al.  PseudoViewer: web application and web service for visualizing RNA pseudoknots and secondary structures , 2006, Nucleic Acids Res..

[42]  ROY MARKHAM,et al.  Structure of Ribonucleic Acid , 1951, Nature.

[43]  Susan Tweedie,et al.  Genenames.org: the HGNC and VGNC resources in 2017 , 2016, Nucleic Acids Res..

[44]  Craig L. Zirbel,et al.  Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking , 2012 .

[45]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[46]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[47]  Robert D. Finn,et al.  Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research , 2020, Briefings Bioinform..

[48]  Jan Hajic,et al.  rPredictorDB: a predictive database of individual secondary structures of RNAs and their formatted plots , 2019, Database J. Biol. Databases Curation.

[49]  R. Gutell,et al.  Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA. , 1989, Journal of biomolecular structure & dynamics.

[50]  Eric Westhof,et al.  Predicting and modeling RNA architecture. , 2011, Cold Spring Harbor perspectives in biology.

[51]  R Giegé,et al.  Universal rules and idiosyncratic features in tRNA identity. , 1998, Nucleic acids research.

[52]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..