For better or worse: genomic consequences of intracellular mutualism and parasitism.

Bacteria that replicate within eukaryotic host cells include a variety of pathogenic and mutualistic species. Early genome data for these intracellular associates suggested they experience continual gene loss, little if any gene acquisition, and minimal recombination in small, isolated populations. This view of reductive evolution is itself evolving as new genome sequences clarify mechanisms and outcomes of diverse intracellular associations. Recently sequenced genomes have confirmed a trajectory of gene loss and exceptional genome stability in long-term, nutritional mutualists and certain pathogens. However, new genome data for the Rickettsiales and Chlamydiales indicate more repeated DNA, a greater abundance of mobile DNA elements, and more labile genome dynamics than previously suspected for ancient intracellular lineages. Surprising discoveries of conjugation machinery in the parasite Rickettsia felis and the amoebae symbiont Parachlamydia sp. suggest that DNA transfer might play key roles in some intracellular taxa.

[1]  P. Degnan,et al.  Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. , 2005, Genome research.

[2]  Hidemi Watanabe,et al.  Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia , 2002, Nature Genetics.

[3]  S. Salzberg,et al.  Serendipitous discovery of Wolbachia genomes in multiple Drosophila species , 2005, Genome Biology.

[4]  N. Moran,et al.  Genes Lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis , 2001, Science.

[5]  K. Schleifer,et al.  The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Volumes I-IV. , 1992 .

[6]  Kelly A Brayton,et al.  Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  C. Fraser,et al.  Complete genome sequence of the Q-fever pathogen Coxiella burnetii , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Fourie Joubert,et al.  The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  N. Moran,et al.  Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. , 2003, Environmental microbiology.

[10]  N. Moran,et al.  Regulation of Transcription in a Reduced Bacterial Genome: Nutrient-Provisioning Genes of the Obligate Symbiont Buchnera aphidicola , 2005, Journal of bacteriology.

[11]  Eduardo P C Rocha,et al.  Base composition bias might result from competition for metabolic resources. , 2002, Trends in genetics : TIG.

[12]  A. Latorre,et al.  The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. , 2004, Molecular biology and evolution.

[13]  N. Moran Accelerated evolution and Muller's rachet in endosymbiotic bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Sinkins,et al.  Use of Wolbachia to drive nuclear transgenes through insect populations , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  Guangwei Fan,et al.  Complete Genome Sequence of Rickettsia typhi and Comparison with Sequences of Other Rickettsiae , 2004, Journal of bacteriology.

[16]  A. Dautry‐Varsat,et al.  Chlamydia: five years A.G. (after genome). , 2004, Current opinion in microbiology.

[17]  Natalia N. Ivanova,et al.  The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode , 2005, PLoS biology.

[18]  W. Goebel,et al.  Intracellular survival strategies of mutualistic and parasitic prokaryotes. , 2001, Trends in microbiology.

[19]  S. Andersson,et al.  Microbial genome evolution: sources of variability. , 2002, Current opinion in microbiology.

[20]  David Ussery,et al.  CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data , 2004, Bioinform..

[21]  Andrés Moya,et al.  Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Moya,et al.  Postsymbiotic plasmid acquisition and evolution of the repA1-replicon in Buchnera aphidicola. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jürgen Gadau,et al.  The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Gilbert Greub,et al.  A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system , 2004, BMC Microbiology.

[25]  D. Raoult,et al.  Proteome analysis of Rickettsia conorii by two-dimensional gel electrophoresis coupled with mass spectrometry. , 2005, FEMS microbiology letters.

[26]  Rodrigo Gouveia-Oliveira,et al.  Genome update: DNA repeats in bacterial genomes. , 2004, Microbiology.

[27]  J. Claverie,et al.  The Genome Sequence of Rickettsia felis Identifies the First Putative Conjugative Plasmid in an Obligate Intracellular Parasite , 2005, PLoS biology.

[28]  Y. Zhao,et al.  Novel insertion sequence-like elements in phytoplasma strains of the aster yellows group are putative new members of the IS3 family. , 2005, FEMS microbiology letters.

[29]  K. Bourtzis,et al.  Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Narat,et al.  Antibody response to GroEL varies in patients with acute Mycoplasma pneumoniae infection. , 2005, FEMS immunology and medical microbiology.

[31]  W. Reznikoff,et al.  Mobile DNA in obligate intracellular bacteria , 2005, Nature Reviews Microbiology.

[32]  Dmitrij Frishman,et al.  Illuminating the Evolutionary History of Chlamydiae , 2004, Science.

[33]  Mauricio H. Pontes,et al.  Degenerative evolution and functional diversification of type-III secretion systems in the insect endosymbiont Sodalis glossinidius. , 2005, Molecular biology and evolution.

[34]  Ling V. Sun,et al.  Phylogenomics of the Reproductive Parasite Wolbachia pipientis wMel: A Streamlined Genome Overrun by Mobile Genetic Elements , 2004, PLoS biology.

[35]  N. Moran,et al.  Microbial Minimalism Genome Reduction in Bacterial Pathogens , 2002, Cell.

[36]  A. Rodolakis,et al.  Molecular cloning of the Chlamydophila abortus groEL gene and evaluation of its protective efficacy in a murine model by genetic vaccination. , 2004, Journal of medical microbiology.

[37]  S. Andersson,et al.  Functional divergence and horizontal transfer of type IV secretion systems. , 2005, Molecular biology and evolution.

[38]  J S Brownstein,et al.  The potential of virulent Wolbachia to modulate disease transmission by insects. , 2003, Journal of invertebrate pathology.

[39]  W. Miller,et al.  Evidence for a Global Wolbachia Replacement in Drosophila melanogaster , 2005, Current Biology.

[40]  Andrés Moya,et al.  Genome Rearrangement Distances and Gene Order Phylogeny in γ-Proteobacteria , 2005 .

[41]  N. Moran,et al.  Bacteriocyte-Associated symbiotic of insects: A variety of insect groups harbor ancient prokaryotic endosymbionts , 1998 .

[42]  S. Salzberg,et al.  Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. , 2003, Nucleic acids research.

[43]  P. Buchner Endosymbiosis of Animals with Plant Microorganisms , 1965 .

[44]  S. Aksoy,et al.  Interactions among multiple genomes: tsetse, its symbionts and trypanosomes. , 2005, Insect biochemistry and molecular biology.

[45]  T. Nyström,et al.  Defense against Protein Carbonylation by DnaK/DnaJ and Proteases of the Heat Shock Regulon , 2005, Journal of bacteriology.

[46]  N. Moran,et al.  Deletional bias and the evolution of bacterial genomes. , 2001, Trends in genetics : TIG.

[47]  Ulrich Dobrindt,et al.  Prokaryotic Chromosomes and Disease , 2003, Science.

[48]  Aimee M. Tucker,et al.  Transposon Mutagenesis of the Obligate Intracellular Pathogen Rickettsia prowazekii , 2004, Applied and Environmental Microbiology.

[49]  N. Moran,et al.  50 Million Years of Genomic Stasis in Endosymbiotic Bacteria , 2002, Science.

[50]  N. Moran,et al.  Type III secretion systems and the evolution of mutualistic endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Moya,et al.  Bacterial endosymbionts of insects: insights from comparative genomics. , 2004, Environmental microbiology.

[52]  H. Muller THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. , 1964, Mutation research.

[53]  G. Palmer The highest priority: what microbial genomes are telling us about immunity. , 2002, Veterinary immunology and immunopathology.

[54]  S. Andersson,et al.  Genome reduction in the α-Proteobacteria , 2005 .

[55]  Andrés Moya,et al.  GroEL and the maintenance of bacterial endosymbiosis. , 2004, Trends in genetics : TIG.

[56]  T. Ohta Slightly Deleterious Mutant Substitutions in Evolution , 1973, Nature.

[57]  D. Corsaro,et al.  Emerging Chlamydial Infections , 2004, Critical reviews in microbiology.

[58]  N. Moran,et al.  Bacteriocyte-Associated Endosymbionts of Insects , 1998 .

[59]  M. Wagner,et al.  Bacterial Endosymbionts of Free-living Amoebae1 , 2004, The Journal of eukaryotic microbiology.

[60]  S. Andersson,et al.  The evolution of chronic infection strategies in the α-proteobacteria , 2004, Nature Reviews Microbiology.

[61]  J. Claverie,et al.  Some lessons from Rickettsia genomics. , 2005, FEMS microbiology reviews.

[62]  Thomas Dandekar,et al.  Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts , 2004, Microbiology and Molecular Biology Reviews.

[63]  E. McGraw,et al.  Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. , 2004, Current opinion in microbiology.

[64]  N. Moran The Ubiquitous and Varied Role of Infection in the Lives of Animals and Plants , 2002, The American Naturalist.

[65]  S. Eriksson,et al.  Bacterial genome size reduction by experimental evolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  N. Moran,et al.  Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects , 2005, Applied and Environmental Microbiology.

[67]  C. Kurland,et al.  Reductive evolution of resident genomes. , 1998, Trends in microbiology.

[68]  Wei Wei,et al.  Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma , 2004, Nature Genetics.

[69]  B. Slatko,et al.  First sequenced genome of a parasitic nematode. , 2004, Trends in parasitology.

[70]  R. Burne,et al.  Bacterial ureases in infectious diseases. , 2000, Microbes and infection.

[71]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[72]  M. Horn,et al.  Novel chlamydiae in whiteflies and scale insects: endosymbionts 'Candidatus Fritschea bemisiae' strain Falk and 'Candidatus Fritschea eriococci' strain Elm. , 2005, International journal of systematic and evolutionary microbiology.

[73]  N. Moran,et al.  Genomic changes following host restriction in bacteria. , 2004, Current opinion in genetics & development.

[74]  A. Moya,et al.  Evolution of the Leucine Gene Cluster in Buchnera aphidicola: Insights from Chromosomal Versions of the Cluster , 2004, Journal of bacteriology.

[75]  N. Moran,et al.  The process of genome shrinkage in the obligate symbiont Buchnera aphidicola , 2001, Genome Biology.

[76]  D. Ussery,et al.  The Atlas visualization of genomewide information , 2002 .

[77]  D. Ussery,et al.  Three views of microbial genomes. , 1999, Research in microbiology.

[78]  T. Vellai,et al.  Speciation in Chlamydia: Genomewide Phylogenetic Analyses Identified a Reliable Set of Acquired Genes , 2003, Journal of Molecular Evolution.

[79]  S. Andersson,et al.  Genome deterioration: loss of repeated sequences and accumulation of junk DNA , 2002, Genetica.

[80]  K. Bourtzis,et al.  Extrachromosomal DNA of the Symbiont Sodalis glossinidius , 2005, Journal of bacteriology.

[81]  Santiago F. Elena,et al.  Endosymbiotic bacteria: GroEL buffers against deleterious mutations , 2002, Nature.

[82]  A. Moya,et al.  Comparative analysis of two genomic regions among four strains of Buchnera aphidicola, primary endosymbiont of aphids. , 2005, Gene.

[83]  S. Aksoy,et al.  Strategies of the home-team: symbioses exploited for vector-borne disease control. , 2004, Trends in microbiology.

[84]  Alfonso Valencia,et al.  Reductive genome evolution in Buchnera aphidicola , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Brownlie,et al.  Wolbachia Genomes: Insights into an Intracellular Lifestyle , 2005, Current Biology.

[86]  N. Moran,et al.  Estimating Population Size and Transmission Bottlenecks in Maternally Transmitted Endosymbiotic Bacteria , 2002, Microbial Ecology.

[87]  M. Wagner,et al.  ATP/ADP Translocases: a Common Feature of Obligate Intracellular Amoebal Symbionts Related to Chlamydiae and Rickettsiae , 2004, Journal of bacteriology.

[88]  M. Ghanim,et al.  A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. , 1999, Virology.

[89]  G. Burke,et al.  Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis , 2005, Journal of bacteriology.

[90]  W. Bruno,et al.  Recombination in the Genome of Chlamydia trachomatis Involving the Polymorphic Membrane Protein C Gene Relative to ompA and Evidence for Horizontal Gene Transfer , 2004, Journal of bacteriology.

[91]  S. Andersson,et al.  Evolution of minimal-gene-sets in host-dependent bacteria. , 2004, Trends in microbiology.