Al80Cr20N-layer thickness-dependent microstructure and mechanical properties of Al50Cr50N/Al80Cr20N nanomultilayered films

[1]  Hao Wang,et al.  Pressureless reaction sintering and hot isostatic pressing of transparent MgAlON ceramic with high strength , 2018, Ceramics International.

[2]  K. Wahl,et al.  Below the Hall-Petch Limit in Nanocrystalline Ceramics. , 2018, ACS nano.

[3]  Zhaoxi Li,et al.  The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study , 2018 .

[4]  Shihong Zhang,et al.  Structural optimisation and electrochemical behaviour of AlCrN coatings , 2016 .

[5]  Dong Wang,et al.  Size effect on mechanical behavior of Al/Si3N4 multilayers by nanoindentation , 2015 .

[6]  J. Tischler,et al.  Reply to comments on “An extended hardness limit in bulk nanoceramics”, Acta Materialia 69 (2014) 9–16 , 2014 .

[7]  P. Mayrhofer,et al.  Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated Al–Cr–N coatings , 2014 .

[8]  J. Tischler,et al.  An extended hardness limit in bulk nanoceramics , 2014 .

[9]  I. Popov,et al.  Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials , 2013 .

[10]  Ping Liu,et al.  Structure, mechanical properties and thermal stability of CrAlN/ZrO2 nanomultilayers deposited by magnetron sputtering , 2013 .

[11]  R. Jayaganthan,et al.  Influence of Al Contents on the Microstructure, Mechanical, and Wear properties of Magnetron Sputtered CrAlN Coatings , 2012, Journal of Materials Engineering and Performance.

[12]  Ping Liu,et al.  Investigation on microstructure and properties of CrAlN/AlON nanomultilayers , 2011 .

[13]  H. Berg,et al.  Modified TiAlN coatings prepared by d.c. pulsed magnetron sputtering , 2010 .

[14]  M. Odén,et al.  Age hardening in arc-evaporated ZrAlN thin films , 2010 .

[15]  Geyang Li,et al.  Research Development of Hard Ceramic Nano-multilayer Films: Research Development of Hard Ceramic Nano-multilayer Films , 2010 .

[16]  O. Sanchéz,et al.  Mechanical, tribological, and electrochemical behavior of Cr1−xAlxN coatings deposited by r.f. reactive magnetron co-sputtering method , 2010 .

[17]  J. Duh,et al.  Microstructure and mechanical properties of CrAlN/SiNx nanostructure multilayered coatings , 2009 .

[18]  Yong Du,et al.  Compositional and structural evolution of sputtered Ti-Al-N , 2009 .

[19]  H. Barshilia,et al.  Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering , 2008 .

[20]  P. Chen,et al.  Deposition of TiSiN coatings by arc ion plating process , 2008 .

[21]  F. Fang,et al.  Cr1−xAlxN coatings deposited by lateral rotating cathode arc for high speed machining applications , 2008 .

[22]  Brahmeshwar Mishra,et al.  Microstructure, mechanical and tribological properties of Cr1−xAlxN films deposited by pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS) , 2006 .

[23]  G. Fox-Rabinovich,et al.  Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel , 2006 .

[24]  B. Sartory,et al.  Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation , 2005 .

[25]  A. García-Luis,et al.  Magnetron sputtering of Cr(Al)N coatings: Mechanical and tribological study , 2005 .

[26]  F. Mei,et al.  Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN∕SiO2 nanomultilayers , 2005 .

[27]  A. Kimura,et al.  Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films , 2003 .

[28]  G. Mingyuan,et al.  Alternating stress field and superhardness effect in TiN/NbN superlattice films , 2002 .

[29]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[30]  M. Griepentrog,et al.  Mechanical properties and tribological behavior of TiN–CrAlN and CrN–CrAlN multilayer coatings , 1999 .

[31]  Y. Makino Application of Band Parameters to Materials Design , 1998 .

[32]  P. Anderson,et al.  Hall-Petch relations for multilayered materials , 1995 .

[33]  J. Gong,et al.  Microstructure and mechanical properties of metal/ceramic Ti/TiN multilayers , 1993 .

[34]  Jan Almlöf,et al.  General methods for geometry and wave function optimization , 1992 .

[35]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[36]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[37]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[38]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[39]  A. Rosen,et al.  On the validity of the hall-petch relationship in nanocrystalline materials , 1989 .

[40]  S. Barnett,et al.  Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness , 1987 .

[41]  T. Mori,et al.  Hardening by spinodal modulated structure , 1980 .

[42]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[43]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[44]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[45]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[46]  Yue-Cheng Jian Research Development of Hard Ceramic Nano-multilayer Films , 2010 .

[47]  F. Vaz,et al.  Thermal oxidation of Ti1 − xAlxN coatings in air , 1997 .

[48]  Universities of Leeds, Sheffield and York , 2022 .