Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing

The stochastic 2D Navier-Stokes equations on the torus driven by degenerate noise are studied. We characterize the smallest closed invariant subspace for this model and show that the dynamics restricted to that subspace is ergodic. In particular, our results yield a purely geometric characterization of a class of noises for which the equation is ergodic in L 2 0 (T 2 ). Unlike previous works, this class is independent of the viscosity and the strength of the noise. The two main tools of our analysis are the asymptotic strong Feller property, introduced in this work, and an approximate integration by parts formula. The first, when combined with a weak type of irreducibility, is shown to ensure that the dynamics is ergodic. The second is used to show that the first holds un

[1]  L. Kantorovich On a Problem of Monge , 2006 .

[2]  L. Kantorovich On the Translocation of Masses , 2006 .

[3]  Jonathan C. Mattingly,et al.  The Small Scales of the Stochastic Navier–Stokes Equations Under Rough Forcing , 2004, math-ph/0408060.

[4]  Jonathan C. Mattingly,et al.  Malliavin calculus for the stochastic 2D Navier—Stokes equation , 2004, math/0407215.

[5]  Sergei Kuksin,et al.  The Eulerian Limit for 2D Statistical Hydrodynamics , 2004 .

[6]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[7]  Jonathan C. Mattingly On recent progress for the stochastic Navier Stokes equations , 2004, math/0409194.

[8]  R. Rosa Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence , 2002 .

[9]  Jonathan C. Mattingly Exponential Convergence for the Stochastically Forced Navier-Stokes Equations and Other Partially Dissipative Dynamics , 2002 .

[10]  Jonathan C. Mattingly The Dissipative Scale of the Stochastics Navier–Stokes Equation: Regularization and Analyticity , 2002 .

[11]  C. Foias,et al.  Statistical Estimates for the Navier–Stokes Equations and the Kraichnan Theory of 2-D Fully Developed Turbulence , 2002 .

[12]  L. Young,et al.  Ergodic Theory of Infinite Dimensional Systems¶with Applications to Dissipative Parabolic PDEs , 2002 .

[13]  J. Bricmont,et al.  Ergodicity of the 2D Navier--Stokes Equations¶with Random Forcing , 2001 .

[14]  Jonathan C. Mattingly,et al.  Ergodicity for the Navier‐Stokes equation with degenerate random forcing: Finite‐dimensional approximation , 2001 .

[15]  Weinan E,et al.  Gibbsian Dynamics and Ergodicity¶for the Stochastically Forced Navier–Stokes Equation , 2001 .

[16]  Martin Hairer,et al.  Exponential mixing properties of stochastic PDEs through asymptotic coupling , 2001, math/0109115.

[17]  Armen Shirikyan,et al.  A Coupling Approach¶to Randomly Forced Nonlinear PDE's. I , 2001 .

[18]  J. Eckmann,et al.  Uniqueness of the Invariant Measure¶for a Stochastic PDE Driven by Degenerate Noise , 2000, nlin/0009028.

[19]  J. Bricmont,et al.  Exponential Mixing of the 2D Stochastic Navier-Stokes Dynamics , 2000 .

[20]  A. Shirikyan,et al.  Stochastic Dissipative PDE's and Gibbs Measures , 2000 .

[21]  J.,et al.  Ergodicity of the 2 D Navier-Stokes Equations with Random Forcing , 2000 .

[22]  Jonathan C. Mattingly Ergodicity of 2D Navier–Stokes Equations with¶Random Forcing and Large Viscosity , 1999 .

[23]  Sandra Cfrrai Ergodicity for stochastic reaction-diffusion systems with polynomial coefficients , 1999 .

[24]  Benedetta Ferrario,et al.  Ergodic results for stochastic navier-stokes equation , 1997 .

[25]  R. Khasminskii,et al.  Stationary solutions of nonlinear stochastic evolution equations , 1997 .

[26]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[27]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[28]  Franco Flandoli,et al.  Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .

[29]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[30]  G. Constantain,et al.  Probability Metrics and the Stability of Stochastic Models , 1995 .

[31]  Franco Flandoli,et al.  Dissipativity and invariant measures for stochastic Navier-Stokes equations , 1994 .

[32]  K. Elworthy,et al.  Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.

[33]  Hantaek Bae Navier-Stokes equations , 1992 .

[34]  J. Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[35]  Michael Beals,et al.  JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES , 1991 .

[36]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[37]  A. Cruzeiro Solutions ET mesures invariantes pour des equations d'evolution Stochastiques du type Navier-Stokes , 1987 .

[38]  Denis R. Bell The Malliavin Calculus , 1987 .

[39]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[40]  R. Melrose,et al.  JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES , 1981 .

[41]  R. Temam Navier-Stokes Equations , 1977 .

[42]  E. Anderson Linear Programming In Infinite Dimensional Spaces , 1970 .

[43]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[44]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[45]  G. Beck,et al.  Actualités scientifiques et industrielles , 1933 .