Global existence and boundedness in a higher-dimensional quasilinear chemotaxis system

AbstractThis paper deals with the boundedness of global solutions to the quasilinear Keller–Segel system $$\left\{\begin{array}{ll}u_t=\nabla\cdot\big(D(u)\nabla u-u\nabla v\big), &\quad x\in\Omega,\,\, t>0,\\ v_t=\Delta v-uf(v),&\quad x\in\Omega, \,\,t>0,\\ \nabla u\cdot \nu=0,\,\, \nabla v\cdot\nu=0,&\quad x\in \partial\Omega,\,\, t>0\end{array}\right.$$ut=∇·(D(u)∇u-u∇v),x∈Ω,t>0,vt=Δv-uf(v),x∈Ω,t>0,∇u·ν=0,∇v·ν=0,x∈∂Ω,t>0in a bounded domain $${\Omega\subset \mathbb{R}^{n}(n\geq 3)}$$Ω⊂Rn(n≥3) with smooth boundary, where D(u) is supposed to satisfy D(u) ≥ D0um-1 with some positive constant D0. It is proved that when $${m>2-\frac{n+2}{2n}}$$m>2-n+22n, the system possesses global bounded weak solutions for any sufficiently smooth nonnegative initial data. In particular, we improved the recent result by Wang et al. (Z Angew Math Phys, 2015. doi:10.1007/s00033-014-0491-9) in the sense that we established the global boundedness of weak solutions. We also removed the convexity assumption on the domain used by Wang et al. (Z Angew Math Phys 65:1137–1152, 2014, 2015).

[1]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[2]  Youshan Tao,et al.  Boundedness in a chemotaxis model with oxygen consumption by bacteria , 2011 .

[3]  Zhaoyin Xiang,et al.  A Note on Global Existence for the Chemotaxis–Stokes Model with Nonlinear Diffusion , 2014 .

[4]  Michael Winkler,et al.  Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system , 2016 .

[5]  Chunlai Mu,et al.  Boundedness in a parabolic-parabolic chemotaxis system with nonlinear diffusion , 2014 .

[6]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[7]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .

[8]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[9]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[10]  Alexander Lorz,et al.  COUPLED CHEMOTAXIS FLUID MODEL , 2010 .

[11]  Qian Zhang,et al.  Global Well-Posedness for the Two-Dimensional Incompressible Chemotaxis-Navier-Stokes Equations , 2014, SIAM J. Math. Anal..

[12]  Youshan Tao,et al.  Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion , 2012 .

[13]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[14]  Youshan Tao,et al.  Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant , 2012 .

[15]  M. Winkler How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? , 2015, 1506.05592.

[16]  Kyungkeun Kang,et al.  Existence of Smooth Solutions to Coupled Chemotaxis-Fluid Equations , 2011, 1112.4566.

[17]  Alexander Lorz,et al.  A coupled chemotaxis-fluid model: Global existence , 2011 .

[18]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[19]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[20]  Zhaoyin Xiang,et al.  Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source , 2015 .

[21]  Chuan Xue,et al.  Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms , 2015 .

[22]  Weak solutions for a bioconvection model related to Bacillus subtilis , 2012, 1203.4806.

[23]  Youshan Tao,et al.  Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion , 2013 .

[24]  Alexander Lorz,et al.  Global Solutions to the Coupled Chemotaxis-Fluid Equations , 2010 .

[25]  Michael Winkler,et al.  Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops , 2012 .

[26]  K. Kang,et al.  Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations , 2013, 1304.7536.

[27]  I. Tuval,et al.  Bacterial swimming and oxygen transport near contact lines. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Alexander Lorz,et al.  Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior , 2010 .

[29]  Sachiko Ishida,et al.  Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains , 2014 .

[30]  Chunlai Mu,et al.  Global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant , 2015 .

[31]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[32]  Michael Winkler,et al.  Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity , 2015, 1501.07059.