Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color

The fabrication of responsive photonic structures from cellulose nanocrystals (CNCs) that can operate in the entire visible spectrum is challenging due to the requirements of precise periodic modulation of the pitch size of the self-assembled multilayer structures at the length scale within the wavelength of the visible light. The surface charge density of CNCs is an important factor in controlling the pitch size of the chiral nematic structure of the dried solid CNC films. The assembly of poly(ethylene glycol) (PEG) together with CNCs into smaller chiral nematic domains results in solid films with uniform helical structure upon slow drying. Large, flexible, and flat photonic composite films with uniform structure colors from blue to red are prepared by changing the composition of CNCs and PEG. The CNC/PEG(80/20) composite film demonstrates a reversible and smooth structural color change between green and transparent in response to an increase and decrease of relative humidity between 50% and 100% owing to the reversible swelling and dehydration of the chiral nematic structure. The composite also shows excellent mechanical and thermal properties, complementing the multifunctional property profile.

[1]  Y. Nishio,et al.  Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. , 2012, Biomacromolecules.

[2]  Guangtao Li,et al.  Visual indication of enviromental humidity by using poly(ionic liquid) photonic crystals. , 2010, Chemical communications.

[3]  Xin Xu,et al.  Atomic force microscopy characterization of cellulose nanocrystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[4]  Qianqian Wang,et al.  Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis , 2015, Cellulose.

[5]  Zhiqiang Fang,et al.  Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. , 2016, Chemical reviews.

[6]  C. Schütz,et al.  Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[7]  D. Gray,et al.  Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[8]  Kevin E. Shopsowitz,et al.  Responsive photonic hydrogels based on nanocrystalline cellulose. , 2013, Angewandte Chemie.

[9]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[10]  Y. Nishio,et al.  Different orientation patterns of cellulose nanocrystal films prepared from aqueous suspensions by shearing under evaporation , 2015, Cellulose.

[11]  I. Smalyukh,et al.  Cellulose Nanocrystal/Poly(ethylene glycol) Composite as an Iridescent Coating on Polymer Substrates: Structure-Color and Interface Adhesion. , 2016, ACS applied materials & interfaces.

[12]  M. MacLachlan,et al.  Structure and transformation of tactoids in cellulose nanocrystal suspensions , 2016, Nature Communications.

[13]  S. Vignolini,et al.  Flexible Photonic Cellulose Nanocrystal Films , 2016, Advanced materials.

[14]  J. Bras,et al.  Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. , 2015, ACS applied materials & interfaces.

[15]  Mark P. Andrews,et al.  Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films , 2013 .

[16]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[17]  Di Zhang,et al.  Biomimetic optical materials: Integration of nature’s design for manipulation of light , 2013 .

[18]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[19]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[20]  A. Walther,et al.  Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure. , 2015, ACS nano.

[21]  Qi Zhou,et al.  Self-Organization of Cellulose Nanocrystals Adsorbed with Xyloglucan Oligosaccharide-Poly(ethylene glycol)-Polystyrene Triblock Copolymer , 2009 .

[22]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[23]  K. Yager,et al.  Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[24]  D. Gray,et al.  Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis , 2013, Cellulose.

[25]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[26]  Qi Zhou,et al.  A Transparent, Hazy, and Strong Macroscopic Ribbon of Oriented Cellulose Nanofibrils Bearing Poly(ethylene glycol) , 2015, Advanced materials.

[27]  Daniel T. N. Chen,et al.  Tunable dynamics of microtubule-based active isotropic gels , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Olivier Deparis,et al.  Switchable reflector in the Panamanian tortoise beetle Charidotella egregia (Chrysomelidae: Cassidinae). , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  R. Berry,et al.  Controlled production of patterns in iridescent solid films of cellulose nanocrystals , 2013, Cellulose.

[30]  Lei Jiang,et al.  Colorful humidity sensitive photonic crystal hydrogel , 2008 .

[31]  D. Gray,et al.  Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings , 2015, Cellulose.

[32]  Bruno Frka-Petesic,et al.  Shape Memory Cellulose-Based Photonic Reflectors. , 2016, ACS applied materials & interfaces.

[33]  Cees W. M. Bastiaansen,et al.  Stimuli‐Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels , 2015 .

[34]  Su Chen,et al.  Facile fabrication of tunable colloidal photonic crystal hydrogel supraballs toward a colorimetric humidity sensor , 2013 .

[35]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[36]  A. Walther,et al.  Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers. , 2016, ACS applied materials & interfaces.

[37]  P. Brogueira,et al.  Structural Color and Iridescence in Transparent Sheared Cellulosic Films , 2013 .

[38]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  M. MacLachlan,et al.  Functional materials from cellulose-derived liquid-crystal templates. , 2015, Angewandte Chemie.

[40]  Jian Tang,et al.  Visually readable and highly stable self-display photonic humidity sensor , 2012 .

[41]  Dagang Liu,et al.  Structure–color mechanism of iridescent cellulose nanocrystal films , 2014 .

[42]  Ping Liu,et al.  Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. , 2014, Biomacromolecules.

[43]  Fumiko Kimura,et al.  Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[44]  L. Bergström,et al.  Correlation between structural properties and iridescent colors of cellulose nanocrystalline films , 2016, Cellulose.

[45]  M. MacLachlan,et al.  Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. , 2013, Chemical communications.

[46]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[47]  Michael Giese,et al.  Responsive mesoporous photonic cellulose films by supramolecular cotemplating. , 2014, Angewandte Chemie.

[48]  B. Frka‐Petesic,et al.  Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields , 2017, Advanced materials.

[49]  Pawel Pieranski,et al.  Mind the Microgap in Iridescent Cellulose Nanocrystal Films , 2017, Advanced materials.

[50]  Jeremy J. Baumberg,et al.  Digital Color in Cellulose Nanocrystal Films , 2014, ACS applied materials & interfaces.

[51]  D. Gray,et al.  Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .

[52]  Kenichi Yoshikawa,et al.  Collapse of single DNA molecule in poly(ethylene glycol) solutions , 1995 .

[53]  E. Kumacheva,et al.  Composite Cholesteric Nanocellulose Films with Enhanced Mechanical Properties , 2017 .

[54]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[55]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[56]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[57]  N. Abidi,et al.  Distinct Chiral Nematic Self-Assembling Behavior Caused by Different Size-Unified Cellulose Nanocrystals via a Multistage Separation. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[58]  L. Bergström,et al.  Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  D. Gray Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films , 2016, Nanomaterials.

[60]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[61]  T. Elder,et al.  Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids , 2016 .