Parameterization of PBL Processes in an Atmospheric General Circulation Model: Description and Preliminary Assessment

Abstract This paper presents the basic features of a newly developed planetary boundary layer (PBL) parameterization, and the performance assessment of a version of the University of California, Los Angeles (UCLA), Atmospheric General Circulation Model (AGCM) to which the parameterization is incorporated. The UCLA AGCM traditionally uses a framework in which a sigma-type vertical coordinate for the PBL shares a coordinate surface with the free atmosphere at the PBL top. This framework facilitates an explicit representation of processes concentrated near the PBL top, which is crucially important especially for predicting PBL clouds. In the new framework, multiple layers are introduced between the PBL top and earth’s surface, allowing for predictions of the vertical profiles of potential temperature, total water mixing ratio, and horizontal winds within the PBL. The vertically integrated “bulk” turbulent kinetic energy (TKE) is also predicted for the PBL. The PBL-top mass entrainment is determined through a...

[1]  Christopher S. Bretherton,et al.  A Moist PBL Parameterization for Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine Boundary Layers , 2001 .

[2]  B. Stevens Entrainment in stratocumulus‐topped mixed layers , 2002 .

[3]  Harshvardhan,et al.  Earth radiation budget and cloudiness simulations with a general circulation model , 1989 .

[4]  R. Breidenthal Entrainment at thin stratified interfaces : the effects of Schmidt, Richardson, and Reynolds numbers , 1992 .

[5]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[6]  I. Troen,et al.  A simple model of the atmospheric boundary layer; sensitivity to surface evaporation , 1986 .

[7]  Evaluation of a new PBL parameterization with emphasis in surface fluxes , 2004 .

[8]  A. Arakawa The Cumulus Parameterization Problem: Past, Present, and Future , 2004 .

[9]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[10]  Robert Wood,et al.  Diurnal cycle of liquid water path over the subtropical and tropical oceans , 2002 .

[11]  Adrian Lock,et al.  A New Boundary Layer Mixing Scheme. Part II: Tests in Climate and Mesoscale Models , 2000 .

[12]  S. Nicholls,et al.  A Study of the Diurnal Variation of Stratocumulus Using A Multiple Mixed Layer Model , 2007 .

[13]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[14]  P. Sullivan,et al.  A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows , 1994 .

[15]  João Paulo Teixeira,et al.  An eddy‐diffusivity/mass‐flux parametrization for dry and shallow cumulus convection , 2004 .

[16]  D. Lilly Models of cloud-topped mixed layers under a strong inversion , 1968 .

[17]  David A. Randall,et al.  A cumulus parameterization with a prognostic closure , 1998 .

[18]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[19]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[20]  C. Bretherton,et al.  The Epic 2001 Stratocumulus Study , 2004 .

[21]  Coupled simulations obtained by the UCLA AGCM with a new PBL parameterization and the MIT global OGCM , 2005 .

[22]  A. Arakawa,et al.  Peruvian stratus clouds and the tropical Pacific circulation , 1996 .

[23]  C. Bretherton,et al.  Buoyancy reversal and cloud‐top entrainment instability , 1990 .

[24]  L. Mahrt Stratified Atmospheric Boundary Layers and Breakdown of Models , 1998 .

[25]  Harshvardhan,et al.  Interactions among Radiation, Convection, and Large-Scale Dynamics in a General Circulation Model , 1989 .

[26]  A. Slingo,et al.  Aircraft observations of marine stratocumulus during JASIN , 1982 .

[27]  Zhaoxin Li,et al.  Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties , 1991 .

[28]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[29]  C. Moeng Entrainment Rate, Cloud Fraction, and Liquid Water Path of PBL Stratocumulus Clouds , 2000 .

[30]  J. Deardorff,et al.  Parameterization of the Planetary Boundary layer for Use in General Circulation Models1 , 1972 .

[31]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[32]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[33]  Carlos A. Nobre,et al.  OBSERVATIONS OF CLIMATE, ALBEDO, AND SURFACE RADIATION OVER CLEARED AND UNDISTURBED AMAZONIAN FOREST , 1993 .

[34]  Anthony D. Del Genio,et al.  A Prognostic Cloud Water Parameterization for Global Climate Models , 1996 .

[35]  A. Lock The parametrization of entrainment in cloudy boundary layers , 1998 .

[36]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[37]  J. Deardorff Cloud Top Entrainment Instability , 1980 .

[38]  Peter Bechtold,et al.  A model of marine boundary-layer cloudiness for mesoscale applications , 1992 .

[39]  Piers J. Sellers,et al.  A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) , 1989 .

[40]  D. Randall,et al.  Conditional instability of the first kind upside-down. [in stratocumulus clouds] , 1980 .

[41]  D. Lilly Entrainment into Mixed Layers. Part II: A New Closure , 2002 .

[42]  Akio Arakawa,et al.  Chapter 18 – A Coupled GCM Pilgrimage: From Climate Catastrophe to ENSO Simulations , 2000 .

[43]  S. Derbyshire Boundary-Layer Decoupling over Cold Surfaces as a Physical Boundary-Instability , 1999 .

[44]  D. Lilly,et al.  Dynamics and chemistry of marine stratocumulus - DYCOMS II , 2003 .

[45]  D. Randall Entrainment into a Stratocumulus Layer with Distributed Radiative Cooling , 1980 .

[46]  P. Duynkerke,et al.  Simulation of diurnal variation in a stratocumulus-capped marine boundary layer during FIRE , 1993 .

[47]  Byron A. Boville,et al.  Sensitivity of Simulated Climate to Model Resolution , 1991 .

[48]  H. Laurent,et al.  Diurnal march of the convection observed during TRMM‐WETAMC/LBA , 2002 .

[49]  A. Arakawa,et al.  Vertical Differencing of the Primitive Equations in Sigma Coordinates , 1983 .

[50]  Qing Wang,et al.  A Surface Flux Parameterization Based on the Vertically Averaged Turbulence Kinetic Energy , 1996 .

[51]  A. Holtslag,et al.  A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting , 1990 .

[52]  D. Randall,et al.  Diurnal Variability of the Hydrologic Cycle and Radiative Fluxes: Comparisons between Observations and a GCM , 2000 .

[53]  D. Randall,et al.  Atmospheric Turbulence and Mesoscale Meteorology: Dreams of a stratocumulus sleeper , 2004 .

[54]  M. Baker,et al.  Convection and entrainment across stratified interfaces , 1985 .

[55]  R. Terra PBL stratiform cloud inhomogeneities thermally induced by the orography: A parameterization for climate models , 2004 .

[56]  David A. Randall,et al.  A second-order bulk boundary-layer model , 1992 .

[57]  Roger Davies,et al.  A fast radiation parameterization for atmospheric circulation models , 1987 .

[58]  Akio Arakawa,et al.  The parameterization of the planetary boundary layer in the UCLA general circulation model - Formulation and results , 1983 .

[59]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[60]  Hilding Sundqvist,et al.  A parameterization scheme for non-convective condensation including prediction of cloud water content , 1978 .