Basic Measures for Imprecise Point Sets in R d

Most algorithms in computational geometry tend to assume that all input is exact, with no imprecision or error. Most real-world data however, has some imprecision (for example due to measurement error). Thus, there exists a need for algorithms that can produce meaningful output for imprecise input data. In this thesis, I present results on the computation of upper and lower bounds on various basic measures (such as diameter, width, closest pair, volume of smallest enclosing ball and volume of minimum axis aligned bounding box) for imprecise point sets in Rd. I model the imprecision by representing an imprecise point set as a set of regions (balls or polytopes), such that each point may lie anywhere within one of the regions. This work is an extension of previous research by Löffler and van Kreveld on imprecise point sets in R2, to higher dimensions.

[1]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1992, SCG '92.

[2]  Maarten Löffler,et al.  Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..

[3]  Michiel H. M. Smid,et al.  Computing the width of a three-dimensional point set: an experimental study , 1999, JEAL.

[4]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[5]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[6]  Henk Meijer,et al.  Optimal Nearly-Similar Polygon Stabbers of Convex Polygons , 1994, CCCG.

[7]  R. Winder Partitions of N-Space by Hyperplanes , 1966 .

[8]  Sergio Cabello,et al.  Approximation algorithms for spreading points , 2004, J. Algorithms.

[9]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Jirí Fiala,et al.  Systems of distant representatives , 2005, Discret. Appl. Math..

[11]  Bernd Gärtner,et al.  The smallest enclosing ball of balls: combinatorial structure and algorithms , 2003, SCG '03.

[12]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[13]  Maarten Löffler,et al.  Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.

[14]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[15]  Jack Snoeyink,et al.  Almost-Delaunay simplices: nearest neighbor relations for imprecise points , 2004, SODA '04.

[16]  David Avis,et al.  Algorithms for high dimensional stabbing problems , 1990, Discret. Appl. Math..

[17]  Takayuki Nagai,et al.  Tight Error Bounds of Geometric Problems on Convex Objects with Imprecise Coordinates , 2000, JCDCG.

[18]  Maarten Löffler,et al.  Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.

[19]  Sergey Bereg,et al.  Facility location problems with uncertainty on the plane , 2005, Discret. Optim..

[20]  Abbas Edalat,et al.  Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.

[21]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[22]  D. Salesin,et al.  Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.

[23]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[24]  Manuel Abellanas,et al.  Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..

[25]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.