Basic Measures for Imprecise Point Sets in R d
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Diameter, width, closest line pair, and parametric searching , 1992, SCG '92.
[2] Maarten Löffler,et al. Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..
[3] Michiel H. M. Smid,et al. Computing the width of a three-dimensional point set: an experimental study , 1999, JEAL.
[4] Micha Sharir,et al. A subexponential bound for linear programming , 1992, SCG '92.
[5] Jon Louis Bentley,et al. Multidimensional divide-and-conquer , 1980, CACM.
[6] Henk Meijer,et al. Optimal Nearly-Similar Polygon Stabbers of Convex Polygons , 1994, CCCG.
[7] R. Winder. Partitions of N-Space by Hyperplanes , 1966 .
[8] Sergio Cabello,et al. Approximation algorithms for spreading points , 2004, J. Algorithms.
[9] Godfried T. Toussaint,et al. Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Jirí Fiala,et al. Systems of distant representatives , 2005, Discret. Appl. Math..
[11] Bernd Gärtner,et al. The smallest enclosing ball of balls: combinatorial structure and algorithms , 2003, SCG '03.
[12] Vladlen Koltun. Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[13] Maarten Löffler,et al. Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.
[14] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[15] Jack Snoeyink,et al. Almost-Delaunay simplices: nearest neighbor relations for imprecise points , 2004, SODA '04.
[16] David Avis,et al. Algorithms for high dimensional stabbing problems , 1990, Discret. Appl. Math..
[17] Takayuki Nagai,et al. Tight Error Bounds of Geometric Problems on Convex Objects with Imprecise Coordinates , 2000, JCDCG.
[18] Maarten Löffler,et al. Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.
[19] Sergey Bereg,et al. Facility location problems with uncertainty on the plane , 2005, Discret. Optim..
[20] Abbas Edalat,et al. Computing Delaunay Triangulation with Imprecise Input Data , 2003, CCCG.
[21] Raimund Seidel,et al. Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[22] D. Salesin,et al. Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.
[23] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[24] Manuel Abellanas,et al. Structural Tolerance and Delaunay Triangulation , 1999, Inf. Process. Lett..
[25] Bernd Gärtner. A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.