The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin’s Method
暂无分享,去创建一个
Paul Houston | Ignacio Muga | Sarah Roggendorf | Kristoffer G. van der Zee | P. Houston | I. Muga | K. G. van der Zee | Sarah Roggendorf
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Pierre Cantin. Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces , 2017 .
[3] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[4] Tsuyoshi Murata,et al. {m , 1934, ACML.
[5] Ignacio Muga,et al. Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods , 2015, SIAM J. Numer. Anal..
[6] Jerome Droniou,et al. $W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems , 2016 .
[7] M. Mitrea,et al. Sobolev Estimates for the Green Potential Associated with the Robin—Laplacian in Lipschitz Domains Satisfying a Uniform Exterior Ball Condition , 2009 .
[8] H. Alt,et al. Linear Functional Analysis , 2016 .
[9] Dorina Mitrea,et al. Boundary value problems for the Laplacian in convex and semiconvex domains , 2010 .
[10] Ju P Krasovskiĭ. ISOLATION OF SINGULARITIES OF THE GREEN'S FUNCTION , 1967 .
[11] V. Adolfsson. Lp-integrability of the second order derivatives of Green potentials in convex domains , 1993 .
[12] Ari Stern,et al. Banach space projections and Petrov–Galerkin estimates , 2013, Numerische Mathematik.
[13] Kenneth Eriksson. Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .
[14] Ignacio Muga,et al. The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces , 2018, Comput. Methods Appl. Math..
[15] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[16] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[17] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[18] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[19] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[20] Dennis F. Cudia. The geometry of Banach spaces , 1964 .
[21] Jürgen Roßmann,et al. Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.
[22] Stephen J. Fromm,et al. Potential space estimates for Green potentials in convex domains , 1993 .
[23] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[24] Lars B. Wahlbin,et al. Best approximation property in the W1∞ norm for finite element methods on graded meshes , 2011, Math. Comput..
[25] Jens Markus Melenk,et al. An hp finite element method for convection-diffusion problems , 1997 .
[26] Jindřich Nečas,et al. Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .
[27] I. Babuska. Error-bounds for finite element method , 1971 .
[28] K. Deimling. Nonlinear functional analysis , 1985 .
[29] S. Franz,et al. Greenʼs function estimates for a singularly perturbed convection–diffusion problem , 2012 .
[30] Carlos E. Kenig,et al. The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .
[31] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .