The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin’s Method

Abstract While it is classical to consider the solution of the convection-diffusion-reaction equation in the Hilbert space H 0 1 ⁢ ( Ω ) {H_{0}^{1}(\Omega)} , the Banach Sobolev space W 0 1 , q ⁢ ( Ω ) {W^{1,q}_{0}(\Omega)} , 1 < q < ∞ {1<q<{\infty}} , is more general allowing more irregular solutions. In this paper we present a well-posedness theory for the convection-diffusion-reaction equation in the W 0 1 , q ⁢ ( Ω ) {W^{1,q}_{0}(\Omega)} - W 0 1 , q ′ ⁢ ( Ω ) {W_{0}^{1,q^{\prime}}(\Omega)} functional setting, 1 q + 1 q ′ = 1 {\frac{1}{q}+\frac{1}{q^{\prime}}=1} . The theory is based on directly establishing the inf-sup conditions. Apart from a standard assumption on the advection and reaction coefficients, the other key assumption pertains to a subtle regularity requirement for the standard Laplacian. An elementary consequence of the well-posedness theory is the stability and convergence of Galerkin’s method in this setting, for a diffusion-dominated case and under the assumption of W 1 , q ′ {W^{1,q^{\prime}}} -stability of the H 0 1 {H_{0}^{1}} -projector.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Pierre Cantin Well-posedness of the scalar and the vector advection–reaction problems in Banach graph spaces , 2017 .

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Ignacio Muga,et al.  Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods , 2015, SIAM J. Numer. Anal..

[6]  Jerome Droniou,et al.  $W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems , 2016 .

[7]  M. Mitrea,et al.  Sobolev Estimates for the Green Potential Associated with the Robin—Laplacian in Lipschitz Domains Satisfying a Uniform Exterior Ball Condition , 2009 .

[8]  H. Alt,et al.  Linear Functional Analysis , 2016 .

[9]  Dorina Mitrea,et al.  Boundary value problems for the Laplacian in convex and semiconvex domains , 2010 .

[10]  Ju P Krasovskiĭ ISOLATION OF SINGULARITIES OF THE GREEN'S FUNCTION , 1967 .

[11]  V. Adolfsson Lp-integrability of the second order derivatives of Green potentials in convex domains , 1993 .

[12]  Ari Stern,et al.  Banach space projections and Petrov–Galerkin estimates , 2013, Numerische Mathematik.

[13]  Kenneth Eriksson Improved accuracy by adapted mesh-refinements in the finite element method , 1985 .

[14]  Ignacio Muga,et al.  The Discrete-Dual Minimal-Residual Method (DDMRes) for Weak Advection-Reaction Problems in Banach Spaces , 2018, Comput. Methods Appl. Math..

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[17]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[18]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[19]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[20]  Dennis F. Cudia The geometry of Banach spaces , 1964 .

[21]  Jürgen Roßmann,et al.  Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods , 2009, Numerische Mathematik.

[22]  Stephen J. Fromm,et al.  Potential space estimates for Green potentials in convex domains , 1993 .

[23]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[24]  Lars B. Wahlbin,et al.  Best approximation property in the W1∞ norm for finite element methods on graded meshes , 2011, Math. Comput..

[25]  Jens Markus Melenk,et al.  An hp finite element method for convection-diffusion problems , 1997 .

[26]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[27]  I. Babuska Error-bounds for finite element method , 1971 .

[28]  K. Deimling Nonlinear functional analysis , 1985 .

[29]  S. Franz,et al.  Greenʼs function estimates for a singularly perturbed convection–diffusion problem , 2012 .

[30]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[31]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .