Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas

The coverage of Health Care Center toward Universal Child Immunization (UCI) at Banyuwangi Regency in 2018 met the target 91%. Unfortunately, with a high amount of immunization, the number of infant deaths reached 138 infants. Total number increased 111 from the previous year. A review of the complete basic immunization data needs to be done. In this research, a clustering method was proposed by comparing the K-Means and Fuzzy C-Means (FCM) algorithm in grouping Health Care Center data. Silhouette Coefficient and Standard Deviation were used to evaluate clusters that were performed to find out the accuracy in grouping data. The result showed that the FCM algorithm was better than K-Means based on Silhouette Coefficient results that were positive value, and the calculation of Standard Deviation had a smaller result that was 0.0918 than K-Means with the results of 0.0942. The Grouping of Heath Care Center data can be considered by the Health Department of Banyuwangi Regency in evaluating complete basic immunization services, especially in groups with poor immunization services to reduce infant and child mortality, so a disease that can be prevented with immunization become lower.

[1]  Mardiati Nadjib,et al.  Determinan Cakupan Imunisasi Dasar Lengkap pada Penerima Program Keluarga Harapan , 2019, Jurnal Ekonomi Kesehatan Indonesia.

[2]  Ahmad Chusyairi,et al.  Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering , 2019, Telematika.

[3]  Samuel M. Simanjuntak,et al.  Peningkatan Pengetahuan dan Sikap Ibu Tentang Imunisasi dengan Pendekatan Promosi Kesehatan Tentang Imuniasi Dasar , 2019, Media Karya Kesehatan.

[4]  R. Rahmawati,et al.  Analisis Cluster untuk Pengelompokan Desa Berdasarkan Indikator Penyakit Diare , 2019, SAINTIFIK.

[5]  Prihandoko Prihandoko,et al.  Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan , 2018, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi).

[6]  A. J. Hadi,et al.  Perilaku Ibu dalam Pemberian Imunisasi DPT/Hb-Hib di Desa Sinabang Kecamatan Simeulue Timur , 2018, Jurnal Kesehatan Global.

[7]  T. Bala Ramya,et al.  Disease Prediction System Using Fuzzy C-Means Algorithm , 2018 .

[8]  Cici Suhaeni,et al.  Perbandingan Hasil Pengelompokan menggunakan Analisis Cluster Berhirarki, K-Means Cluster, dan Cluster Ensemble (Studi Kasus Data Indikator Pelayanan Kesehatan Ibu Hamil) , 2018 .

[9]  Miftahol Hudhah,et al.  PERILAKU IBU DALAM IMUNISASI DASAR LENGKAP DI PUSKESMAS GAYAM KABUPATEN SUMENEP , 2018 .

[10]  Rahman Syarif Perbandingan Algoritme K-Means Dengan Algoritme Fuzzy C Means (FCM) Dalam Clustering Moda Transportasi Berbasis GPS , 2018 .

[11]  M. W. Talakua,et al.  ANALISIS CLUSTER DENGAN MENGGUNAKAN METODE K-MEANS UNTUK PENGELOMPOKKAN KABUPATEN/KOTA DI PROVINSI MALUKU BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA TAHUN 2014 , 2017 .

[12]  M. Siddappa,et al.  Implementation and comparison of K-means and fuzzy C-means algorithms for agricultural data , 2017, 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT).

[13]  Sandi Fajar Rodiyansyah K-MEANS DAN FUZZY C-MEANS PADA ANALISIS DATA POLUSI UDARA DI KOTA X , 2017 .

[14]  V. Sinthu Janita Prakash,et al.  An Efficient Inclusive Similarity Based Clustering (ISC) Algorithm for Big Data , 2017, 2017 World Congress on Computing and Communication Technologies (WCCCT).

[15]  B. Mitra IMPLEMENTASI PROGRAM JAMINAN PELAYANAN KESEHATAN MASYARAKAT BANYUWANGI (JPKMB) DALAM MEWUJUDKAN PELAYANAN KESEHATAN PRIMER BAGI SELURUH LAPISAN MASYARAKAT , 2015 .

[16]  B. Simhachalam,et al.  Possibilistic Fuzzy C-means clustering on medical diagnostic systems , 2014, 2014 International Conference on Contemporary Computing and Informatics (IC3I).