Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time delay

It is an important issue to estimate parameters of fractional-order chaotic systems in nonlinear science, which has received increasing interest in recent years. In this paper, time delay and fractional order as well as system's parameters are concerned by treating the time delay and fractional order as additional parameters. The parameter estimation is converted into a multi-dimensional optimization problem. A new scheme based on artificial bee colony U+0028 ABC U+0029 algorithm is proposed to solve the optimization problem. Numerical experiments are performed on two typical time-delay fractional-order chaotic systems to verify the effectiveness of the proposed method.

[1]  SACHIN BHALEKAR,et al.  Dynamics of fractional-ordered Chen system with delay , 2012, Pramana.

[2]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[3]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[4]  Xiaopeng Zhang,et al.  Modified projective synchronization of fractional-order chaotic systems via active sliding mode control , 2012 .

[5]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[8]  Yu Huang,et al.  Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm , 2015, PloS one.

[9]  Xin Wang,et al.  Linear feedback controller design method for time-delay chaotic systems , 2012 .

[10]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[11]  Wei Pan,et al.  On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach , 2011 .

[12]  Jian Lin,et al.  Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization , 2014 .

[13]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[14]  Sam Kwong,et al.  Genetic algorithms and their applications , 1996, IEEE Signal Process. Mag..

[15]  SACHIN BHALEKAR,et al.  A PREDICTOR-CORRECTOR SCHEME FOR SOLVING NONLINEAR DELAY DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 2011 .

[16]  Alain Oustaloup,et al.  Fractional differentiation for edge detection , 2003, Signal Process..

[17]  António M. Lopes,et al.  Fractional Order Control of a Hexapod Robot , 2004 .

[18]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[19]  Sachin Bhalekar,et al.  Fractional ordered Liu system with time-delay , 2010 .

[20]  D. V. Senthilkumar,et al.  Dynamics of Nonlinear Time-Delay Systems , 2011 .

[21]  K. A. Shore,et al.  Synchronization in multiple time delay chaotic laser diodes subject to incoherent optical feedbacks and incoherent optical injection , 2009 .

[22]  Jun Wang,et al.  Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm. , 2014, Chaos.

[23]  Changchun Hua,et al.  Parameter identification of commensurate fractional-order chaotic system via differential evolution , 2012 .

[24]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[25]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Xiaomei Yan,et al.  Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[27]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[28]  Nathalie Corson,et al.  Synchronization of Chaotic fractional-Order Systems via Linear Control , 2010, Int. J. Bifurc. Chaos.

[29]  Rong Zhang,et al.  Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems , 2007 .

[30]  Zhen Wang,et al.  Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay , 2011, Comput. Math. Appl..