The α BB Global Optimization Algorithm for Nonconvex Problems: An Overview

The αBB algorithm, a deterministic global optimization algorithm for constrained twice-differentiable NLPs, is presented. It is based on a branch-and-bound approach in which a convex relaxation of the original nonconvex problem is obtained through a dual procedure. First, all nonconvex terms of special structure (i.e., bilinear, trilinear, fractional, fractional trilinear, univariate concave) are replaced by customized tight convex lower bounding functions. Second, valid convex underestirnators are generated for general nonconvex terms by using a diagonal shift matrix A. A is related to the Hessian matrix of the nonconvex term and four rigorous methods, based on the interval Hessian matrix, are proposed for its computation. Branching variable selection strategies that improve the quality of the convex relaxations are presented. Variable bound updates are also found to affect the convergence rate positively. An implementation of the algorithm is used to solve three examples: a small but highly nonconvex problem, a stability problem and a large-scale problem involving the design of batch plant under uncertainty.

[1]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[2]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[3]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[4]  Christodoulos A. Floudas,et al.  New Formulations and Branching Strategies for the GOP Algorithm , 1996 .

[5]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[6]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[7]  Christodoulos A Floudas,et al.  Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..

[8]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[9]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[10]  Christodoulos A. Floudas,et al.  New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints , 1993, J. Glob. Optim..

[11]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[12]  Chris Stephens,et al.  Interval and Bounding Hessians , 1997 .

[13]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization in Design, Control, and Computational Chemistry , 1997 .

[14]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[15]  C. Floudas,et al.  Primal-relaxed dual global optimization approach , 1993 .

[16]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[17]  A. Deif,et al.  The Interval Eigenvalue Problem , 1991 .

[18]  Christodoulos A. Floudas,et al.  Computational Results for an Efficient Implementation of the GOP Algorithm and Its Variants , 1996 .

[19]  Nils Tönshoff,et al.  Implementation and Computational Results , 1997 .

[20]  C. Floudas,et al.  A deterministic global optimization approach for molecular structure determination , 1994 .

[21]  B. Pourbabai Approximation of the overflow process of a D/G/K loss system , 1990 .

[22]  V. Visweswaran,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems , 1990 .

[23]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[24]  Christodoulos A. Floudas,et al.  Algorithmic approaches to process synthesis : logic and global optimization , 1994 .

[25]  F. Al-Khayyal Jointly constrained bilinear programs and related problems: an overview , 1990 .

[26]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[27]  Constantinos C. Pantelides,et al.  Global Optimisation of General Process Models , 1996 .

[28]  C. Floudas,et al.  Global optimization in multiproduct and multipurpose batch design under uncertainty , 1997 .

[29]  Arnold Neumaier,et al.  An optimality criterion for global quadratic optimization , 1992, J. Glob. Optim..

[30]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[31]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[32]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[33]  Christodoulos A. Floudas,et al.  A remark on the GOP algorithm for global optimization , 1993, J. Glob. Optim..

[34]  A. Neumaier Interval methods for systems of equations , 1990 .

[35]  J. Rohn Bounds on Eigenvalues of Interval Matrices , 1998 .