Event history, spatial analysis and count data methods for empirical research in information systems

A large number of interesting business and technology problems in IS and e-commerce research center around events and the associated variables that influence them. Researchers are often interested in studying the timing, patterns, and frequencies of events. Some of those events are related to the timing of strategic decisions such as new technology adoption, functionality upgrades to established software products, new outsourcing contracts, and the termination of failing IS projects. Still others are external events that have significant implications on the performance of firms, the structure of industries affected by IT, and the viability of various aspects of the economy. Event history methods, also known as survival analysis and duration analysis methods, spatial analysis, and count data analysis in the medical sciences, public health and biostatistics literature, offer rigorous methods for empirical analysis that can provide rich insights into research issues that arise in association with identifiable events. This article provides a current survey of these methods and in-depth discussion of how researchers can apply them to study technology adoption problems and related issues in IS and e-commerce. We offer a framework for mapping the methods to applicable problems, and discuss the relevant variants of the methods. We also illustrate the range of research questions that can be asked and answered through the use of the methods.

[1]  J. Raymond,et al.  Modelling the consumer's decision to replace durable goods: a hazard function approach , 1993 .

[2]  Phillip M. Yelland,et al.  Bayesian Forecasting for Low Count Time Series Using State-Space Models: An Empirical Evaluation for Inventory Management , 2009 .

[3]  D. Hall Zero‐Inflated Poisson and Binomial Regression with Random Effects: A Case Study , 2000, Biometrics.

[4]  A. Cameron,et al.  Microeconometrics: Methods and Applications , 2005 .

[5]  Jeffrey P. Cohen,et al.  Agglomeration economies and industry location decisions: the impacts of spatial and industrial spillovers , 2005 .

[6]  Andy H. Lee,et al.  A hierarchical Poisson mixture regression model to analyse maternity length of hospital stay , 2002, Statistics in medicine.

[7]  Bruce G. S. Hardie,et al.  Marketing-Mix Variables and the Diffusion of Successive Generations of a Technological Innovation , 2001 .

[8]  Elías Moreno,et al.  Estimating with incomplete count data A Bayesian approach , 1998 .

[9]  J. LeSage Bayesian Estimation of Limited Dependent Variable Spatial Autoregressive Models , 2010 .

[10]  Robert J. Kauffman,et al.  Modeling Internet firm survival using Bayesian dynamic models with time-varying coefficients , 2007, Electron. Commer. Res. Appl..

[11]  Sergio J. Rey,et al.  Econometrics for Spatial Models: Recent Advances , 2004 .

[12]  J. S. Silva,et al.  Endogeneity in Count Data Models: An Application to Demand for Health Care , 1997 .

[13]  Rainer Winkelmann,et al.  Duration Dependence and Dispersion in Count-Data Models , 1995 .

[14]  Andy H. Lee,et al.  A score test for zero‐inflation in correlated count data , 2006, Statistics in medicine.

[15]  David W. Hosmer,et al.  Applied Survival Analysis: Regression Modeling of Time-to-Event Data , 2008 .

[16]  Manuel Frondel,et al.  A Count Data Analysis of Ridership in Germany's Public Transport , 2011 .

[17]  P. Deb,et al.  Demand for Medical Care by the Elderly: A Finite Mixture Approach , 1997 .

[18]  Ashish Sood,et al.  Demystifying Disruption: A New Model for Understanding and Predicting Disruptive Technologies , 2010, Mark. Sci..

[19]  Yuji Honjo,et al.  Business failure of new firms: an empirical analysis using a multiplicative hazards model , 2000 .

[20]  Ruth N. Bolton,et al.  A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction , 1994 .

[21]  J. S. Long,et al.  Regression Models for Categorical and Limited Dependent Variables , 1997 .

[22]  Robert J. Kauffman,et al.  Understanding early diffusion of digital wireless phones , 2009 .

[23]  Wanda J. Orlikowski,et al.  Research Commentary: Desperately Seeking the "IT" in IT Research - A Call to Theorizing the IT Artifact , 2001, Inf. Syst. Res..

[24]  David B. Audretsch,et al.  New Firm Survival: New Results Using a Hazard Function , 1995 .

[25]  Kien A. Hua,et al.  A hybrid communication solution to distributed moving query monitoring systems , 2011, Electron. Commer. Res. Appl..

[26]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[27]  Garth Saloner,et al.  Digitized by the Internet Archive in 2011 with Funding from Adoption of Technologies Uith Network Effects: an Empirical Examination of the Adoption of Automated Teller Machines , 2022 .

[28]  David J Houston,et al.  Are helmet laws protecting young motorcyclists? , 2007, Journal of safety research.

[29]  Wendy K. Tam Cho,et al.  Contagion Effects and Ethnic Contribution Networks , 2003 .

[30]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[31]  Robert J. Kauffman,et al.  Tuning into the digital channel: evaluating business model characteristics for Internet firm survival , 2008, Inf. Technol. Manag..

[32]  Pravin K. Trivedi,et al.  Regression Analysis of Count Data , 1998 .

[33]  Stefan Boes,et al.  Empirical Likelihood in Count Data Models: The Case of Endogenous Regressors , 2004 .

[34]  H. Andreß,et al.  Recurrent unemployment—The West German experience: An exploratory analysis using count data models with panel data , 1989 .

[35]  Kenneth S. Berenhaut,et al.  Score tests for heterogeneity and overdispersion in zero‐inflated Poisson and binomial regression models , 2002 .

[36]  Paula E. Stephan,et al.  WHO'S PATENTING IN THE UNIVERSITY? EVIDENCE FROM THE SURVEY OF DOCTORATE RECIPIENTS , 2007 .

[37]  Álvaro A. Novo Contagious Currency Crisis: A Spatial Probit Approach , 2003 .

[38]  Kara M. Kockelman,et al.  Safety Effects of Speed Limit Changes: Use of Panel Models, Including Speed, Use, and Design Variables , 2005 .

[39]  S. Basu,et al.  Analysis of Spatial Autocorrelation in House Prices , 1998 .

[40]  Robert J. Kauffman,et al.  The Unified Procurement Strategy for Enterprise Software: A Test of the "Move to the Middle" Hypothesis , 2009, J. Manag. Inf. Syst..

[41]  Gael M. Martin,et al.  Bayesian predictions of low count time series , 2005 .

[42]  James W Hardin,et al.  Testing Approaches for Overdispersion in Poisson Regression versus the Generalized Poisson Model , 2007, Biometrical journal. Biometrische Zeitschrift.

[43]  Joris Pinkse,et al.  Contracting in space: An application of spatial statistics to discrete-choice models , 1998 .

[44]  Partha Deb,et al.  The structure of demand for health care: latent class versus two-part models. , 2002, Journal of health economics.

[45]  Ying Zhang,et al.  Analysing panel count data with informative observation times. , 2006, Biometrika.

[46]  Clive W. J. Granger,et al.  Aggregation of space-time processes , 2004 .

[47]  Bin Wang,et al.  Developing Rich Insights on Public Internet Firm Entry and Exit Based on Survival Analysis and Data Visualization , 2008 .

[48]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[49]  Milovan Krnjajic,et al.  Parametric and nonparametric Bayesian model specification: A case study involving models for count data , 2008, Comput. Stat. Data Anal..

[50]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[51]  Anne Møller Danø Unemployment and Health conditions - A count data approach , 2002 .

[52]  C. Trevor,et al.  Interactions Among Actual Ease-of-Movement Determinants and Job Satisfaction in the Prediction of Voluntary Turnover , 2001 .

[53]  David R. Bell,et al.  Spatiotemporal Analysis of Imitation Behavior across New Buyers at an Online Grocery Retailer , 2010 .

[54]  J. Hilbe Negative Binomial Regression: Preface , 2007 .

[55]  Pushpa L. Gupta,et al.  Analysis of zero-adjusted count data , 1996 .

[56]  K. Gleditsch,et al.  War and Peace in Space and Time: The Role of Democratization , 2000 .

[57]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[58]  R. Berk,et al.  Overdispersion and Poisson Regression , 2008 .

[59]  Richard Baskerville,et al.  Fashion Waves in Information Systems Research and Practice , 2009, MIS Q..

[60]  B. Aten,et al.  Does Space Matter? International Comparisons of the Prices of Tradables and Nontradables , 1997 .

[61]  J. Paul Elhorst,et al.  New Evidence on the Wage Curve , 2007 .

[62]  T. Harrison,et al.  Customer retention in the insurance industry: Using survival analysis to predict cross-selling opportunities , 2002 .

[63]  Mark M. Fleming Techniques for Estimating Spatially Dependent Discrete Choice Models , 2004 .

[64]  Steven Stern,et al.  Semiparametric estimation of count regression models , 1999 .

[65]  R. Winkelmann,et al.  RECENT DEVELOPMENTS IN COUNT DATA MODELLING: THEORY AND APPLICATION , 1995 .

[66]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[67]  Robert J. Kauffman,et al.  Decommoditization, Resonance Marketing, and Information Technology: An Empirical Study of Air Travel Services amid Channel Conflict , 2011, J. Manag. Inf. Syst..

[68]  A. Zeileis,et al.  Regression Models for Count Data in R , 2008 .

[69]  P. Joskow,et al.  The Diffusion of New Technologies: Evidence from the Electric Utility Industry , 1988 .

[70]  L. Anselin,et al.  Spatial Panel Econometrics , 2008 .

[71]  Robert J. Kauffman,et al.  International Diffusion of Digital Mobile Technology: A Coupled-Hazard State-Based Approach , 2005, Inf. Technol. Manag..

[72]  Roman Liesenfeld,et al.  Time series of count data: modeling, estimation and diagnostics , 2006, Comput. Stat. Data Anal..

[73]  Robert J. Kauffman,et al.  Opening the "Black Box" of Network Externalities in Network Adoption , 2000, Inf. Syst. Res..

[74]  Getachew A Dagne,et al.  Bayesian semiparametric zero-inflated Poisson model for longitudinal count data. , 2010, Mathematical biosciences.

[75]  J. Horowitz Semiparametric and Nonparametric Methods in Econometrics , 2007 .

[76]  Thiagarajan Ravichandran,et al.  Structural analysis of the impact of knowledge creation and knowledge embedding on software process capability , 2003, IEEE Trans. Engineering Management.

[77]  A. Case Neighborhood influence and technological change , 1992 .

[78]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[79]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[80]  Michel Wedel,et al.  A Latent Class Poisson Regression Model for Heterogeneous Count Data , 1993 .

[81]  Stewart E. Tolnay,et al.  Vicarious Violence: Spatial Effects on Southern Lynchings, 1890-1919 , 1996, American Journal of Sociology.

[82]  P. Allison,et al.  7. Fixed-Effects Negative Binomial Regression Models , 2002 .

[83]  A. V. D. Ven,et al.  Explaining Development and Change in Organizations , 1995 .

[84]  Shirley Gregor,et al.  The Nature of Theory in Information Systems , 2006, MIS Q..

[85]  Lee-Jen Wei,et al.  Regression Parameter Estimation from Panel Counts , 2003 .

[86]  R. Berk Regression Analysis: A Constructive Critique , 2003 .

[87]  Murat K. Munkin,et al.  Simulated maximum likelihood estimation of multivariate mixed‐Poisson regression models, with application , 1999 .

[88]  Rainer Winkelmann,et al.  Seemingly Unrelated Negative Binomial Regression , 2000 .

[89]  Chap T. Le,et al.  Applied Survival Analysis , 1998 .

[90]  J. Mullahy Specification and testing of some modified count data models , 1986 .

[91]  Sergio J. Rey,et al.  Advances in Spatial Econometrics , 2004 .

[92]  Wagner A. Kamakura,et al.  Identifying Innovators for the Cross-Selling of New Products , 2001, Manag. Sci..

[93]  K. Pravin,et al.  Recent developments in cross section and panel count models , 2010 .

[94]  Paul Damien,et al.  A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. , 2008, Accident; analysis and prevention.

[95]  Peter Nijkamp,et al.  Forecasting Regional Labor Market Developments under Spatial Autocorrelation , 2007 .

[96]  K. Wannemuehler,et al.  On the Use of Zero-Inflated and Hurdle Models for Modeling Vaccine Adverse Event Count Data , 2006, Journal of biopharmaceutical statistics.

[97]  J. G. Cragg Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods , 1971 .

[98]  James Honaker Unemployment and Violence in Northern Ireland: a missing data model for ecological inference. 1 , 2008 .

[99]  Eric K. Clemons,et al.  The Impact of Information Technology on the Organization of Economic Activity: The "Move to the Middle" Hypothesis , 1993, J. Manag. Inf. Syst..

[100]  M. Markus,et al.  Information technology and organizational change: causal structure in theory and research , 1988 .

[101]  Robert J. Sampson,et al.  Violent Crime and The Spatial Dynamics of Neighborhood Transition: Chicago, 1970–1990 , 1997 .

[102]  Byron S Kennedy,et al.  Does race predict stroke readmission? An analysis using the truncated negative binomial model. , 2005, Journal of the National Medical Association.

[103]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[104]  Angelo J. Kinicki,et al.  Toward a Greater Understanding of How Dissatisfaction Drives Employee Turnover , 2001 .

[105]  Z. Griliches,et al.  Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .

[106]  S. Chib,et al.  Markov Chain Monte Carlo Analysis of Correlated Count Data , 2001 .

[107]  Bettina Aten,et al.  EVIDENCE OF SPATIAL AUTOCORREILATION IN INTERNATIONAL PRICES , 1996 .

[108]  Y. Mundlak On the Pooling of Time Series and Cross Section Data , 1978 .

[109]  Pradeep K. Chintagunta,et al.  The Effect of Banner Advertising on Internet Purchasing , 2006 .

[110]  Robert J. Kauffman,et al.  Partnering for perfection: An economics perspective on B2B electronic market strategic alliances , 2005 .

[111]  Shiferaw Gurmu,et al.  Semi-Parametric Estimation of Hurdle Regression Models with an Application to Medicaid Utilization , 1997 .

[112]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[113]  Charles B. Fleming,et al.  Opening the Black Box: Using Process Evaluation Measures to Assess Implementation and Theory Building , 1999, American journal of community psychology.

[114]  Robert J. Kauffman,et al.  Proprietary and Open Systems Adoption in E-Procurement: A Risk-Augmented Transaction Cost Perspective , 2004, J. Manag. Inf. Syst..

[115]  José Mª Arranz,et al.  Recurrent unemployment, welfare benefits and heterogeneity , 2004 .

[116]  Georges Dionne,et al.  Debt, moral hazard and airline safety An empirical evidence , 1997 .

[117]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[118]  WenSui Liu,et al.  Count Data Models in SAS , 2008 .

[119]  Robert J. Sampson,et al.  Beyond Social Capital: Spatial Dynamics of Collective Efficacy for Children , 1999, American Sociological Review.

[120]  S. Miaou The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions. , 1994, Accident; analysis and prevention.

[121]  Monica J. Garfield,et al.  The Adoption and Use of GSS in Project Teams: Toward More Participative Processes and Outcomes , 2003, MIS Q..

[122]  Kenneth L. Kraemer,et al.  Migration to Open-Standard Interorganizational Systems: Network Effects, Switching Costs, and Path Dependency , 2005, MIS Q..

[123]  T. B. d’Uva,et al.  Latent class models for utilisation of health care. , 2006, Health economics.

[124]  Anol Bhattacherjee,et al.  Understanding Changes in Belief and Attitude Toward Information Technology Usage: A Theoretical Model and Longitudinal Test , 2004, MIS Q..

[125]  L. Anselin,et al.  Toward Spatially Integrated Social Science , 2000 .

[126]  Dazhong Wu,et al.  Competitive Environment and the Relationship Between IT and Vertical Integration , 2009, Inf. Syst. Res..

[127]  Mohammed A Quddus,et al.  Time series count data models: an empirical application to traffic accidents. , 2008, Accident; analysis and prevention.

[128]  Audrey Light,et al.  Unemployment Insurance and Job Quits , 2004, Journal of Labor Economics.

[129]  Andy H. Lee,et al.  Truncated negative binomial mixed regression modelling of ischaemic stroke hospitalizations , 2003, Statistics in medicine.

[130]  Jye-Chyi Lu,et al.  Bayesian analysis of zero-inflated regression models , 2006 .

[131]  Rajiv Kishore,et al.  An investigation of factors that influence the duration of IT outsourcing relationships , 2007, Decis. Support Syst..

[132]  Randall P. Settoon,et al.  A Relational Perspective on Turnover: Examining Structural, Attitudinal, and Behavioral Predictors , 2005 .

[133]  Pravin K. Trivedi ECONOMETRIC MODELS OF EVENT COUNTS , 1997 .

[134]  K. Eason Information Technology and Organizational Change , 1989 .

[135]  J. Klein,et al.  Survival Analysis: Techniques for Censored and Truncated Data , 1997 .

[136]  A. Cameron,et al.  Econometric models based on count data. Comparisons and applications of some estimators and tests , 1986 .

[137]  A. Cameron,et al.  Regression-based tests for overdispersion in the Poisson model☆ , 1990 .

[138]  Rahul Telang,et al.  The Effect of Digital Sharing Technologies on Music Markets: A Survival Analysis of Albums on Ranking Charts , 2007, Manag. Sci..

[139]  D. Anderson,et al.  Estimating the Economic Value of Ice Climbing in Hyalite Canyon: An Application of Travel Cost Count Data Models that Account for Excess Zeros , 2009, Journal of environmental management.

[140]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[141]  Chris Forman,et al.  Vertical Integration and Information Technology Investment in the Insurance Industry , 2011 .

[142]  W. Douglass Shaw,et al.  Hurdle Count-Data Models In Recreation Demand Analysis , 1996 .

[143]  Harvey S. Rosen,et al.  Budget spillovers and fiscal policy interdependence: Evidence from the states , 1993 .

[144]  Richard T. Carson,et al.  Models for truncated counts , 1991 .

[145]  Alok Kumar Dwivedi,et al.  Statistical models for predicting number of involved nodes in breast cancer patients. , 2010, Health.

[146]  Walter Krämer,et al.  Review of Modern applied statistics with S, 4th ed. by W.N. Venables and B.D. Ripley. Springer-Verlag 2002 , 2003 .

[147]  Anna Sidorova,et al.  Uncovering the Intellectual Core of the Information Systems Discipline , 2008, MIS Q..

[148]  Rajiv K. Sinha,et al.  A Split Hazard Model for Analyzing the Diffusion of Innovations , 1992 .

[149]  Wim P. M. Vijverberg,et al.  Probit in a Spatial Context: A Monte Carlo Analysis , 2004 .

[150]  Robert J. Kauffman,et al.  Online and Offline Demand and Price Elasticities: Evidence from the Air Travel Industry , 2012, Inf. Syst. Res..

[151]  Shiferaw Gurmu,et al.  A bivariate zero-inflated count data regression model with unrestricted correlation , 2008 .

[152]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[153]  Kristian Skrede Gleditsch,et al.  Space Is More than Geography: Using Spatial Econometrics in the Study of Political Economy , 2006 .

[154]  W. Brunger The impact of the Internet on airline fares: The ‘Internet Price Effect’ , 2010 .

[155]  J. Lawless,et al.  Tests for Detecting Overdispersion in Poisson Regression Models , 1989 .

[156]  Luc Anselin,et al.  Space and applied econometrics: Introduction , 1992 .

[157]  Robert J. Kauffman,et al.  Are there contagion effects in information technology and business process outsourcing? , 2011, Decis. Support Syst..

[158]  Wojciech J. Florkowski,et al.  Application Of Hurdle Negative Binomial Count Data Model To Demand For Black Bass Fishing In The Southeastern United States , 2003 .

[159]  T. B. d’Uva,et al.  Latent class models for use of primary care: evidence from a British panel. , 2005 .

[160]  M. Crowder Classical Competing Risks , 2001 .

[161]  Dirk Van den Poel,et al.  Customer attrition analysis for financial services using proportional hazard models , 2004, Eur. J. Oper. Res..

[162]  Bart J. Bronnenberg,et al.  A Spatiotemporal Analysis of the Global Diffusion of ISO 9000 and ISO 14000 Certification , 2007, Manag. Sci..

[163]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[164]  Kenneth J. White,et al.  Testing for Autocorrelation with Missing Observations , 1978 .

[165]  Kara M. Kockelman,et al.  A Bayesian Semi-Parametric Model to Estimate Relationships between Crash Counts and Roadway Characteristics , 2010 .

[166]  Pravin K. Trivedi,et al.  12 Count data models for financial data , 1996 .

[167]  N. Rose Profitability and Product Quality: Economic Determinants of Airline Safety Performance , 1990, Journal of Political Economy.

[168]  Wolfgang Jank,et al.  The BARISTA: A model for bid arrivals in online auctions , 2007, 0712.1962.

[169]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[170]  R. Winkelmann Econometric Analysis of Count Data , 1997 .

[171]  Michael D. Ward,et al.  Location, Location, Location: An MCMC Approach to Modeling the Spatial Context of War and Peace , 2002, Political Analysis.

[172]  Varun Grover,et al.  Contributing to Rigorous and Forward Thinking Explanatory Theory , 2008, J. Assoc. Inf. Syst..

[173]  Hoong Chor Chin,et al.  Applying the random effect negative binomial model to examine traffic accident occurrence at signalized intersections. , 2003, Accident; analysis and prevention.

[174]  Rahul Telang,et al.  A Mixture Model for Internet Search-Engine Visits , 2004 .