Photometric Properties of Jupiter Trojans Detected by the Dark Energy Survey
暂无分享,去创建一个
D. Gerdes | J. Frieman | D. Bacon | K. Honscheid | G. Bernstein | D. Tucker | R. Gruendl | M. Pereira | K. Herner | S. Allam | J. Gschwend | I. Sevilla-Noarbe | T. Abbott | D. Brooks | D. Burke | J. Carretero | S. Desai | P. Doel | D. Hollowood | D. James | K. Kuehn | F. Menanteau | R. Miquel | A. Romer | M. Schubnell | M. Smith | E. Suchyta | G. Tarlé | A. Walker | M. March | K. Napier | M. Aguena | S. Hinton | M. Costanzi | N. Kuropatkin | M. Gatti | M. Raveri | E. Sanchez | M. Rodríguez-Monroy | P. Bernardinelli | E. Bertin | A. Pieres | I. Ferrero | M. C. Kind | A. C. Rosell | N. Weaverdyck | O. Alves | L. Costa | D. Friedel | J. D. de Vicente | H. Lin 林 | J. Garc'ia-Bellido | F. Paz-Chinch'on | A. A. P. Malag'on | J. Pan 潘 | Jichi 骥驰 Wang 王 | J. Pan 潘
[1] K. Ohtsuki,et al. Size Distribution of Small Jupiter Trojans in the L5 Swarm , 2022, The Astronomical Journal.
[2] D. Gerdes,et al. A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects , 2021, The Astrophysical Journal Supplement Series.
[3] Astrophysics,et al. Multifilter photometry of Solar System objects from the SkyMapper Southern Survey , 2021, Astronomy & Astrophysics.
[4] D. Gerdes,et al. C/2014 UN271 (Bernardinelli-Bernstein): The Nearly Spherical Cow of Comets , 2021, The Astrophysical Journal Letters.
[5] M. Popescu,et al. Astrocladistics of the Jovian Trojan Swarms , 2021, 2103.10967.
[6] D. Gerdes,et al. The Dark Energy Survey Data Release 2 , 2021, The Astrophysical Journal Supplement Series.
[7] Jaime Fern'andez del R'io,et al. Array programming with NumPy , 2020, Nature.
[8] D. Gerdes,et al. Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey , 2020, The Astronomical Journal.
[9] D. Gerdes,et al. Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey , 2019, The Astrophysical Journal Supplement Series.
[10] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[11] J.Lee,et al. THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.
[12] T. Hiroi,et al. A comparative study of size frequency distributions of Jupiter Trojans, Hildas and main belt asteroids: A clue to planet migration history , 2019, Planetary and Space Science.
[13] B. Ehlmann,et al. Hubble Ultraviolet Spectroscopy of Jupiter Trojans , 2019, The Astronomical Journal.
[14] J. García-Bellido,et al. Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population" , 2018, Icarus.
[15] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[16] B. Yanny,et al. Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.
[17] J. Emery,et al. 0.7–2.5 μm Spectra of Hilda Asteroids , 2017, 1707.09064.
[18] F. Yoshida,et al. Small Jupiter Trojans Survey with the Subaru/Hyper Suprime-Cam , 2017, 1706.10017.
[19] Kyler Kuehn,et al. Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au , 2017, 1702.00731.
[20] Ian Wong,et al. A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS , 2016, 1607.04133.
[21] J. Licandro,et al. Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS) , 2016, 1605.05594.
[22] C. B. D'Andrea,et al. OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS , 2015, 1507.05177.
[23] F. Roig,et al. THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL , 2015, 1509.06105.
[24] I. Wong,et al. THE COLOR–MAGNITUDE DISTRIBUTION OF SMALL JUPITER TROJANS , 2014, 1510.03144.
[25] J. Emery,et al. THE DIFFERING MAGNITUDE DISTRIBUTIONS OF THE TWO JUPITER TROJAN COLOR POPULATIONS , 2014, 1408.2485.
[26] B. Carry,et al. Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.
[27] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[28] Francesca DeMeo,et al. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.
[29] Alessandro Morbidelli,et al. A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.
[30] A. Erikson,et al. ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS , 2011 .
[31] P. H. Hasselmann,et al. SDSS-based taxonomic classification and orbital distribution of main belt asteroids , 2010 .
[32] Harold F. Levison,et al. Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans , 2009, 0903.0923.
[33] Dale P. Cruikshank,et al. NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS , 2008, 1012.1284.
[34] F. Yoshida,et al. A Comparative Study of Size Distributions for Small L4 and L5 Jovian Trojans , 2008 .
[35] R. Gil-Hutton,et al. Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors , 2007, 0712.0046.
[36] Z. Ivezic,et al. The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3 , 2007, astro-ph/0703026.
[37] Johan Holmberg,et al. The colours of the sun , 2005, astro-ph/0511158.
[38] Fumi Yoshida,et al. Size Distribution of Faint Jovian L4 Trojan Asteroids , 2005 .
[39] K. Tsiganis,et al. Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.
[40] J. Brinkmann,et al. Color Confirmation of Asteroid Families , 2002, astro-ph/0208098.
[41] D. Lamb,et al. Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.
[42] D. Hamilton,et al. On the Origin of the Trojan Asteroids: Effects of Jupiter's Mass Accretion and Radial Migration , 2000, astro-ph/0007296.
[43] Hans Scholl,et al. Capture of Trojans by a Growing Proto-Jupiter , 1998 .