Photometric Properties of Jupiter Trojans Detected by the Dark Energy Survey

The Jupiter Trojans are a large group of asteroids that are coorbiting with Jupiter near its L4 and L5 Lagrange points. The study of Jupiter Trojans is crucial for testing different models of planet formation that are directly related to our understanding of solar system evolution. In this work, we select known Jupiter Trojans listed by the Minor Planet Center from the full six years data set (Y6) of the Dark Energy Survey (DES) to analyze their photometric properties. The DES data allow us to study Jupiter Trojans with a fainter magnitude limit than previous studies in a homogeneous survey with griz band measurements. We extract a final catalog of 573 unique Jupiter Trojans. Our sample include 547 asteroids belonging to L5. This is one of the largest analyzed samples for this group. By comparing with the data reported by other surveys we found that the color distribution of L5 Trojans is similar to that of L4 Trojans. We find that L5 Trojans’ g − i and g − r colors become less red with fainter absolute magnitudes, a trend also seen in L4 Trojans. Both the L4 and L5 clouds consistently show such a color–size correlation over an absolute magnitude range 11 < H < 18. We also use DES colors to perform taxonomic classifications. C- and P-type asteroids outnumber D-type asteroids in the L5 Trojans DES sample, which have diameters in the 5–20 km range. This is consistent with the color–size correlation.

[1]  K. Ohtsuki,et al.  Size Distribution of Small Jupiter Trojans in the L5 Swarm , 2022, The Astronomical Journal.

[2]  D. Gerdes,et al.  A Search of the Full Six Years of the Dark Energy Survey for Outer Solar System Objects , 2021, The Astrophysical Journal Supplement Series.

[3]  Astrophysics,et al.  Multifilter photometry of Solar System objects from the SkyMapper Southern Survey , 2021, Astronomy & Astrophysics.

[4]  D. Gerdes,et al.  C/2014 UN271 (Bernardinelli-Bernstein): The Nearly Spherical Cow of Comets , 2021, The Astrophysical Journal Letters.

[5]  M. Popescu,et al.  Astrocladistics of the Jovian Trojan Swarms , 2021, 2103.10967.

[6]  D. Gerdes,et al.  The Dark Energy Survey Data Release 2 , 2021, The Astrophysical Journal Supplement Series.

[7]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[8]  D. Gerdes,et al.  Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey , 2020, The Astronomical Journal.

[9]  D. Gerdes,et al.  Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey , 2019, The Astrophysical Journal Supplement Series.

[10]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[11]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[12]  T. Hiroi,et al.  A comparative study of size frequency distributions of Jupiter Trojans, Hildas and main belt asteroids: A clue to planet migration history , 2019, Planetary and Space Science.

[13]  B. Ehlmann,et al.  Hubble Ultraviolet Spectroscopy of Jupiter Trojans , 2019, The Astronomical Journal.

[14]  J. García-Bellido,et al.  Reprint of "Evidence for color dichotomy in the primordial Neptunian Trojan population" , 2018, Icarus.

[15]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[16]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[17]  J. Emery,et al.  0.7–2.5 μm Spectra of Hilda Asteroids , 2017, 1707.09064.

[18]  F. Yoshida,et al.  Small Jupiter Trojans Survey with the Subaru/Hyper Suprime-Cam , 2017, 1706.10017.

[19]  Kyler Kuehn,et al.  Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au , 2017, 1702.00731.

[20]  Ian Wong,et al.  A HYPOTHESIS FOR THE COLOR BIMODALITY OF JUPITER TROJANS , 2016, 1607.04133.

[21]  J. Licandro,et al.  Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS) , 2016, 1605.05594.

[22]  C. B. D'Andrea,et al.  OBSERVATION OF TWO NEW L4 NEPTUNE TROJANS IN THE DARK ENERGY SURVEY SUPERNOVA FIELDS , 2015, 1507.05177.

[23]  F. Roig,et al.  THE EVOLUTION OF ASTEROIDS IN THE JUMPING-JUPITER MIGRATION MODEL , 2015, 1509.06105.

[24]  I. Wong,et al.  THE COLOR–MAGNITUDE DISTRIBUTION OF SMALL JUPITER TROJANS , 2014, 1510.03144.

[25]  J. Emery,et al.  THE DIFFERING MAGNITUDE DISTRIBUTIONS OF THE TWO JUPITER TROJAN COLOR POPULATIONS , 2014, 1408.2485.

[26]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[27]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[28]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[29]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[30]  A. Erikson,et al.  ROTATIONAL PROPERTIES OF JUPITER TROJANS. I. LIGHT CURVES OF 80 OBJECTS , 2011 .

[31]  P. H. Hasselmann,et al.  SDSS-based taxonomic classification and orbital distribution of main belt asteroids , 2010 .

[32]  Harold F. Levison,et al.  Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans , 2009, 0903.0923.

[33]  Dale P. Cruikshank,et al.  NEAR-INFRARED SPECTROSCOPY OF TROJAN ASTEROIDS: EVIDENCE FOR TWO COMPOSITIONAL GROUPS , 2008, 1012.1284.

[34]  F. Yoshida,et al.  A Comparative Study of Size Distributions for Small L4 and L5 Jovian Trojans , 2008 .

[35]  R. Gil-Hutton,et al.  Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors , 2007, 0712.0046.

[36]  Z. Ivezic,et al.  The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3 , 2007, astro-ph/0703026.

[37]  Johan Holmberg,et al.  The colours of the sun , 2005, astro-ph/0511158.

[38]  Fumi Yoshida,et al.  Size Distribution of Faint Jovian L4 Trojan Asteroids , 2005 .

[39]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[40]  J. Brinkmann,et al.  Color Confirmation of Asteroid Families , 2002, astro-ph/0208098.

[41]  D. Lamb,et al.  Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.

[42]  D. Hamilton,et al.  On the Origin of the Trojan Asteroids: Effects of Jupiter's Mass Accretion and Radial Migration , 2000, astro-ph/0007296.

[43]  Hans Scholl,et al.  Capture of Trojans by a Growing Proto-Jupiter , 1998 .