GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND COSPANS OF GRAPHS

We show that the generic symmetric monoidal category with a commu- tative separable algebra which has a Σ-family of actions is the category of cospans of finite Σ-labelled graphs restricted to finite sets as objects, thus providing a syntax for automata on the alphabet Σ. We use this result to produce semantic functors for Σ- automata.

[1]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[2]  Fabio Gadducci,et al.  An inductive view of graph transformation , 1997, WADT.

[3]  José Meseguer,et al.  Petri Nets Are Monoids , 1990, Inf. Comput..

[4]  F. William Lawvere,et al.  Ordinal sums and equational doctrines , 1969 .

[5]  Nicoletta Sabadini,et al.  Feedback, trace and fixed-point semantics , 2002, RAIRO Theor. Informatics Appl..

[6]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Charles StreetBaltimore,et al.  TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS , 1996 .

[8]  Nicoletta Sabadini,et al.  Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.

[9]  Nicoletta Sabadini,et al.  Hierarchical Automata and P-systems , 2003, Electron. Notes Theor. Comput. Sci..

[10]  R. Wood,et al.  ON GENERIC SEPARABLE OBJECTS , 1998 .

[11]  Reiko Heckel,et al.  A Bi-Categorical Axiomatisation of Concurrent Graph Rewriting , 1999, CTCS.

[12]  N. Sabadini,et al.  Minimization and Minimal Realization in Span ( Graph ) , 2001 .

[13]  Robert D. Rosebrugh,et al.  Minimisation and minimal realisation in Span(Graph) , 2004, Mathematical Structures in Computer Science.

[14]  Ross Street,et al.  Variation through enrichment , 1983 .

[15]  Pawel Sobocinski Process Congruences from Reaction Rules (Column: Concurrency) , 2004, Bull. EATCS.

[16]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[17]  A. Carboni,et al.  Matrices, relations, and group representations , 1991 .