GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND COSPANS OF GRAPHS
暂无分享,去创建一个
[1] A. Carboni,et al. Cartesian bicategories I , 1987 .
[2] Fabio Gadducci,et al. An inductive view of graph transformation , 1997, WADT.
[3] José Meseguer,et al. Petri Nets Are Monoids , 1990, Inf. Comput..
[4] F. William Lawvere,et al. Ordinal sums and equational doctrines , 1969 .
[5] Nicoletta Sabadini,et al. Feedback, trace and fixed-point semantics , 2002, RAIRO Theor. Informatics Appl..
[6] Dominic R. Verity,et al. Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Charles StreetBaltimore,et al. TWO-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES AND FROBENIUS ALGEBRAS , 1996 .
[8] Nicoletta Sabadini,et al. Span(Graph): A Categorial Algebra of Transition Systems , 1997, AMAST.
[9] Nicoletta Sabadini,et al. Hierarchical Automata and P-systems , 2003, Electron. Notes Theor. Comput. Sci..
[10] R. Wood,et al. ON GENERIC SEPARABLE OBJECTS , 1998 .
[11] Reiko Heckel,et al. A Bi-Categorical Axiomatisation of Concurrent Graph Rewriting , 1999, CTCS.
[12] N. Sabadini,et al. Minimization and Minimal Realization in Span ( Graph ) , 2001 .
[13] Robert D. Rosebrugh,et al. Minimisation and minimal realisation in Span(Graph) , 2004, Mathematical Structures in Computer Science.
[14] Ross Street,et al. Variation through enrichment , 1983 .
[15] Pawel Sobocinski. Process Congruences from Reaction Rules (Column: Concurrency) , 2004, Bull. EATCS.
[16] Joachim Kock,et al. Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .
[17] A. Carboni,et al. Matrices, relations, and group representations , 1991 .