Characterizing sources of ghosting in time-sequential stereoscopic video displays

A common artefact of time-sequential stereoscopic video displays is the presence of some image ghosting or crosstalk between the two eye views. In general this happens because of imperfect shuttering of the Liquid Crystal Shutter (LCS) glasses used, and the afterglow of one image into another due to phosphor persistence. This paper describes a project that has measured and quantified these sources of image ghosting and developed a mathematical model of stereoscopic image ghosting. The primary parameters which have been measured for use in the model are: the spectral response of the red, green and blue phosphors for a wide range of monitors, the phosphor decay rate of same, and the transmission response of a wide range of LCS glasses. The model compares reasonably well with perceived image ghosting. This paper aims to provide the reader with an improved understanding of the mechanisms of stereoscopic image ghosting and to provide guidance in reducing image ghosting in time-sequential stereoscopic displays.