Relating the Kinetics of Grain-Boundary Complexion Transitions and Abnormal Grain Growth: A Monte Carlo Time-Temperature-Transformation Approach

[1]  N. Moelans New phase-field model for polycrystalline systems with anisotropic grain boundary properties , 2022, Materials & Design.

[2]  J. Lind,et al.  Grain boundary velocity and curvature are not correlated in Ni polycrystals , 2021, Science.

[3]  B. Patterson,et al.  Linear Relationship Between dV/dt and Grain Volume During Grain Growth , 2021, Metallurgical and Materials Transactions A.

[4]  M. Harmer,et al.  Effect of Eu‐doping and grain boundary plane on complexion transitions in MgAl 2 O 4 , 2021 .

[5]  M. Harmer,et al.  Grain Boundary Complexion Transitions , 2020 .

[6]  M. Harmer,et al.  The Influence of Grain Boundary Area on the Complexion Time-Temperature-Transformation Diagram of Eu-Doped Magnesium Aluminate Spinel , 2020, Scripta Materialia.

[7]  R. Rudd,et al.  Observations of grain boundary phase transformations in an elemental metal , 2020, Nature.

[8]  F. Bachmann,et al.  Integral mean curvature analysis of 3D grain growth: Linearity of dV/dt and grain volume , 2019, IOP Conference Series: Materials Science and Engineering.

[9]  Philp E. Goins,et al.  A Model of Grain Boundary Complexion Transitions and Grain Growth in Yttria-Doped Alumina , 2019, Acta Materialia.

[10]  B. Straumal,et al.  Grain Boundary Complexions and Phase Transformations in Al- and Cu-Based Alloys , 2018, Metals.

[11]  M. Harmer,et al.  Review of grain boundary complexion engineering: Know your boundaries , 2018, Journal of the American Ceramic Society.

[12]  Xuemei Liu,et al.  Complexions in WC-Co cemented carbides , 2018 .

[13]  T. Rupert,et al.  Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W , 2018, Scripta Materialia.

[14]  T. Rupert,et al.  Grain boundary complexions and the strength of nanocrystalline metals: Dislocation emission and propagation , 2017, Acta Materialia.

[15]  T. Rupert,et al.  Materials selection rules for amorphous complexion formation in binary metallic alloys , 2017, 1708.02971.

[16]  M. Harmer,et al.  Calculation and validation of a grain boundary complexion diagram for Bi-doped Ni , 2017 .

[17]  K. Barmak,et al.  Kinetics of first-order phase transitions with correlated nuclei. , 2017, Physical review. E.

[18]  M. Harmer,et al.  Complexion time-temperature-transformation (TTT) diagrams: Opportunities and challenges , 2016 .

[19]  G. Rohrer The role of grain boundary energy in grain boundary complexion transitions , 2016 .

[20]  Jian Luo,et al.  Layering transitions at grain boundaries , 2016 .

[21]  T. Rupert The role of complexions in metallic nano-grain stability and deformation , 2016 .

[22]  M. Harmer,et al.  Expanding time–temperature-transformation (TTT) diagrams to interfaces: A new approach for grain boundary engineering , 2016 .

[23]  Anthony D. Rollett,et al.  Parsing abnormal grain growth , 2016 .

[24]  A. Rollett,et al.  Abnormal grain growth in the Potts model incorporating grain boundary complexion transitions that increase the mobility of individual boundaries , 2015 .

[25]  M. Harmer,et al.  Grain Boundary Complexions , 2014 .

[26]  M. Harmer,et al.  Grain-boundary layering transitions in a model bicrystal , 2013 .

[27]  S. Han,et al.  Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials , 2013 .

[28]  W. Carter,et al.  A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting , 2013, Journal of Materials Science.

[29]  D. Leonard,et al.  Grain boundary complexion transitions in WO3- and CuO-doped TiO2 bicrystals , 2013 .

[30]  M. Harmer,et al.  The Relationship between Grain Boundary Energy, Grain Boundary Complexion Transitions, and Grain Size in Ca-Doped Yttria , 2013 .

[31]  M. Harmer,et al.  Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria , 2012, Metallurgical and Materials Transactions A.

[32]  Jie Chen,et al.  Change-point analysis as a tool to detect abrupt climate variations , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Martin P. Harmer,et al.  The Phase Behavior of Interfaces , 2011, Science.

[34]  L. Gauckler,et al.  Time–Temperature–Transformation (TTT) Diagrams for Crystallization of Metal Oxide Thin Films , 2010 .

[35]  M. Harmer,et al.  Influence of interface energies on solute partitioning mechanisms in doped aluminas , 2010 .

[36]  Martin P. Harmer,et al.  Interfacial Kinetic Engineering: How Far Have We Come Since Kingery's Inaugural Sosman Address? , 2010 .

[37]  M. Harmer,et al.  Relating Grain‐Boundary Complexion to Grain‐Boundary Kinetics I: Calcia‐Doped Alumina , 2008 .

[38]  W. Craig Carter,et al.  Complexion: A new concept for kinetic engineering in materials science , 2007 .

[39]  M. Harmer,et al.  Mechanism of solid-state single-crystal conversion in alumina , 2007 .

[40]  Adrian Baddeley,et al.  Spatial Point Processes and their Applications , 2007 .

[41]  S. Phillpot,et al.  Calculation of the free energy of solids from the energy distribution function , 1991 .

[42]  Michael P. Anderson,et al.  Simulation and theory of abnormal grain growth: anisotropic grain boundary energies and mobilities , 1989 .

[43]  Michael P. Anderson,et al.  Computer simulation of grain growth—IV. Anisotropic grain boundary energies , 1985 .

[44]  Kaski,et al.  Domain growth and scaling in the Q-state Potts model. , 1985, Physical review. B, Condensed matter.

[45]  P. S. Sahni,et al.  Computer simulation of grain growth—I. Kinetics , 1984 .

[46]  P. S. Sahni,et al.  Kinetics of the Q-state Potts model in two dimensions , 1983 .

[47]  E. Bain,et al.  Transformation of austenite at constant subcritical temperatures , 1970, Metallurgical and Materials Transactions B.