Anisotropic mesh refinement for finite element methods based on error reduction

In this paper, we propose an anisotropic adaptive refinement algorithm based on the finite element methods for the numerical solution of partial differential equations. In 2-D, for a given triangular grid and finite element approximating space V, we obtain information on location and direction of refinement by estimating the reduction of the error if a single degree of freedom is added to V. For our model problem the algorithm fits highly stretched triangles along an interior layer, reducing the number of degrees of freedom that a standard h-type isotropic refinement algorithm would use.

[1]  J. Brackbill An adaptive grid with directional control , 1993 .

[2]  Christoph Pflaum,et al.  On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  Serge Nicaise,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .

[5]  Serge Nicaise,et al.  ZIENKIEWICZ{ZHU ERROR ESTIMATORS ON ANISOTROPIC TETRAHEDRAL AND TRIANGULAR FINITE ELEMENT MESHES , 2003 .

[6]  S. Nicaise,et al.  The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .

[7]  Vít Dolejší,et al.  Anisotropic mesh adaptation for numerical solution of boundary value problems , 2004 .

[8]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[9]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[10]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[11]  T. Apel,et al.  Anisotropic mesh refinement in stabilized Galerkin methods , 1996 .

[12]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[13]  G. Kunert Toward anisotropic mesh construction and error estimation in the finite element method , 2002 .

[14]  Waldemar Rachowicz,et al.  An anisotropic h-type mesh-refinement strategy , 1993 .

[15]  D. Ait-Ali-Yahia,et al.  Anisotropic mesh adaptation for 3D flows on structured and unstructured grids , 2000 .

[16]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[17]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[18]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[19]  Frédéric Hecht,et al.  Anisotropic Surface Mesh Generation , 1995 .

[20]  Eduardo F. D'Azevedo On Adaptive Mesh Generation in Two-Dimensions , 1999, IMR.

[21]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[22]  Vít Dolejsí Anisotropic mesh adaptation technique for viscous flow simulation , 2001, J. Num. Math..

[23]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[24]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[25]  Gerd Kunert,et al.  A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..

[26]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[27]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[28]  J. Goodman,et al.  An efficient interpolation algorithm on anisotropic grids for functions with jump discontinuities in 2-D , 2005 .

[29]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[30]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[31]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[32]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[33]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[34]  O. C. Zienkiewicz,et al.  Automatic directional refinement in adaptive analysis of compressible flows , 1994 .