Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K
暂无分享,去创建一个
Hartmut Neven | Kunal Arya | Rami Barends | Brian Burkett | Andrew Dunsworth | Austin Fowler | Brooks Foxen | Rob Graff | Trent Huang | Julian Kelly | Erik Lucero | Ofer Naaman | Pedram Roushan | Kevin J. Satzinger | Amit Vainsencher | Yu Chen | Ted White | Paul Klimov | Zijun Chen | Craig Gidney | Joseph C. Bardin | Josh Mutus | John Martinis | Sayan Das | Chris Quintana | Marissa Giustina | Benjamin Chiaro | Matthew Neeley | Charles J. Neill | Evan Jeffrey | Daniel Thomas Sank | Anthony Edward Megrant | Matthew J. McEwen | H. Neven | E. Lucero | R. Barends | Yu Chen | J. Kelly | A. Megrant | D. Sank | A. Vainsencher | T. White | J. Martinis | A. Fowler | B. Chiaro | A. Dunsworth | E. Jeffrey | J. Mutus | M. Neeley | C. Neill | C. Quintana | P. Roushan | P. Klimov | K. Arya | B. Burkett | Zijun Chen | B. Foxen | C. Gidney | M. Giustina | R. Graff | Trent Huang | O. Naaman | J. Bardin | M. McEwen | K. Satzinger | Sanket Das | T. Huang
[1] Michael Tinkham,et al. Introduction to Superconductivity , 1975 .
[2] J. J. Sakurai,et al. Modern Quantum Mechanics , 1986 .
[3] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[4] L. Beda. Thermal physics , 1994 .
[5] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[6] Herbert Kroemer,et al. Introduction to superconducting circuits , 1999 .
[7] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[8] John M. Martinis,et al. Accurate Control of Josephson Phase Qubits , 2003 .
[9] S. Girvin,et al. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.
[10] L Frunzio,et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.
[11] S. Girvin,et al. Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.
[12] Klaus Molmer,et al. Fidelity of quantum operations , 2007 .
[13] Jens Koch,et al. Coupling superconducting qubits via a cavity bus , 2007, Nature.
[14] J M Gambetta,et al. Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.
[15] B. Lanyon,et al. Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.
[16] S. Girvin,et al. Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.
[17] J. M. Gambetta,et al. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.
[18] W. Marsden. I and J , 2012 .
[19] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[20] J. C. Bardin,et al. Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).
[21] R. Barends,et al. Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.
[22] J. Martinis,et al. Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.
[23] H. Lu,et al. Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.
[24] George A. Hernandez,et al. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications , 2016, 1606.04557.
[25] A. Vladimirescu,et al. Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).
[26] Lin Song,et al. 15.5 Cryo-CMOS circuits and systems for scalable quantum computing , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).
[27] J. Gambetta,et al. Efficient Z gates for quantum computing , 2016, 1612.00858.
[28] O. A. Mukhanov,et al. Quantum–classical interface based on single flux quantum digital logic , 2017, 1710.04645.
[29] D. Yost,et al. 3D integrated superconducting qubits , 2017, 1706.04116.
[30] Zijun Chen,et al. Metrology of Quantum Control and Measurement in Superconducting Qubits , 2018 .
[31] Arnout Beckers,et al. Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K , 2018, IEEE Journal of the Electron Devices Society.
[32] Edoardo Charbon,et al. Characterization and Model Validation of Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).
[33] E. Charbon,et al. Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.
[34] Edoardo Charbon,et al. Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.
[35] Arnout Beckers,et al. Design-oriented modeling of 28 nm FDSOI CMOS technology down to 4.2 K for quantum computing , 2018, 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS).
[36] C. Howington,et al. Measurement of a superconducting qubit with a microwave photon counter , 2018, Science.
[37] Edoardo Charbon,et al. Deep-Cryogenic Voltage References in 40-nm CMOS , 2018, IEEE Solid-State Circuits Letters.
[38] Edoardo Charbon,et al. Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).
[39] Edoardo Charbon,et al. Impact of Classical Control Electronics on Qubit Fidelity , 2018, Physical Review Applied.
[40] P. Asbeck,et al. Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs , 2019, IEEE Electron Device Letters.
[41] Alexander Opremcak,et al. Digital Coherent Control of a Superconducting Qubit , 2018, Physical Review Applied.
[42] Igor V. Vernik,et al. Superconducting Qubit Control with Single Flux Quantum Pulses in A Multichip Module: Part II Qubit and Quasiparticle Measurement , 2019 .